Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T21:19:28.601Z Has data issue: false hasContentIssue false

Sums of Dilates in Groups of Prime Order

Published online by Cambridge University Press:  06 October 2011

ALAIN PLAGNE*
Affiliation:
Centre de Mathématiques Laurent Schwartz, École polytechnique, 91128 Palaiseau Cedex, France (e-mail: [email protected])

Abstract

We obtain a first non-trivial estimate for the sum of dilates problem in the case of groups of prime order, by showing that if t is an integer different from 0, 1 or −1 and if ⊂ ℤ/pℤ is not too large (with respect to p), then | + t| is significantly larger than 2|| (unless |t| = 3). In the important case |t| = 2, we obtain for instance | + t| ≥ 2.08 ||−2.

Type
Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bukh, B. (2008) Sums of dilates. Combin. Probab. Comput. 17 627639.Google Scholar
[2]Cauchy, A.-L. (1813) Recherches sur les nombres. J. École Polytechnique 9 99123.Google Scholar
[3]Cilleruelo, J., Hamidoune, Y. O. and Serra, O. (2009) On sums of dilates. Combin. Probab. Comput. 18 871880.CrossRefGoogle Scholar
[4]Cilleruelo, J., Silva, M. and Vinuesa, C. (2010) A sumset problem. J. Combin. Number Theory 2.Google Scholar
[5]Du, S.-S., Cao, H.-Q. and Sun, Z.-W. On a sumset problem for the integers. arXiv:1011.5438Google Scholar
[6]Freiman, G. A. (1973) Foundations of a Structural Theory of Set Addition, Vol. 37 of Translations of Mathematical Monographs, AMS.Google Scholar
[7]Hamidoune, Y. O. and Plagne, A. (2002) A generalization of Freiman's 3k − 3 theorem. Acta Arith. 103 147156.Google Scholar
[8]Hamidoune, Y. O. and Rué, J. (2011) A lower bound for the size of a Minkowski sum of dilates. Combin. Probab. Comput. 20 249256.Google Scholar
[9]Lev, V. F. (2005) Distribution of points on arcs. Integers: Electron. J. Combin. Number Theory 5 #A11.Google Scholar
[10]Lev, V. F. (2007) More on points and arcs. Integers: Electron. J. Combin. Number Theory 7 #A24.Google Scholar
[11]Ljujic, Z. A lower bound for the size of a sum of dilates. arXiv.1101.5425Google Scholar
[12]Nathanson, M. (2008) Inverse problems for linear forms over finite sets of integers. J. Ramanujan Math. Soc. 23 151165.Google Scholar