Article contents
Some Constructions in the Inverse Spectral Theory of Cyclic Groups
Published online by Cambridge University Press: 17 March 2003
Abstract
The results of this paper concern the ‘large spectra’ of sets, by which we mean the set of points in ${\bb F}_p^{\times}$ at which the Fourier transform of a characteristic function $\chi_A$, $A\subseteq {\bb F}_p$, can be large. We show that a recent result of Chang concerning the structure of the large spectrum is best possible. Chang's result has already found a number of applications in combinatorial number theory.
We also show that if $|A|=\lfloor {p/2}\rfloor$, and if $R$ is the set of points $r$ for which $|\hat{\chi}_A(r)|\geqslant \alpha p$, then almost nothing can be said about $R$ other than that $|R|\ll \alpha^{-2}$, a trivial consequence of Parseval's theorem.
- Type
- Research Article
- Information
- Copyright
- 2003 Cambridge University Press
- 13
- Cited by