Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T22:20:51.175Z Has data issue: false hasContentIssue false

The Self-Avoiding-Walk and Percolation Critical Points in High Dimensions

Published online by Cambridge University Press:  12 September 2008

Takashi Hara
Affiliation:
Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 OEH, UK
Gordon Slade
Affiliation:
Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 OEH, UK

Abstract

We prove the existence of an asymptotic expansion in the inverse dimension, to all orders, for the connective constant for self-avoiding walks on ℤd. For the critical point, defined as the reciprocal of the connective constant, the coefficients of the expansion are computed through order d−6, with a rigorous error bound of order d−7 Our method for computing terms in the expansion also applies to percolation, and for nearest-neighbour independent Bernoulli bond percolation on ℤd gives the 1/d-expansion for the critical point through order d−3, with a rigorous error bound of order d−4 The method uses the lace expansion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alm, S. E. (1993) Upper bounds for the connective constant of self-avoiding walks. Combinatorics, Probability and Computing 2 115136.CrossRefGoogle Scholar
[2]Bollobás, B. and Kohayakawa, Y. (1994) Percolation in high dimensions. Euro. J. Combinatorics 15 113125.CrossRefGoogle Scholar
[3]Brydges, D. C. and Spencer, T. (1985) Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97 125148.CrossRefGoogle Scholar
[4]Conway, A. R. and Guttmann, A. J. (1993) Lower bound on the connective constant for square lattice self-avoiding walks. J. Phys. A: Math. Gen. 26 37193724.CrossRefGoogle Scholar
[5]Fisher, M. E. and Gaunt, D. S. (1964) Ising model and self-avoiding walks on hypercubical lattices and ‘high-density’ expansions. Phys. Rev. 133 A224–A239.CrossRefGoogle Scholar
[6]Fisher, M. E. and Singh, R. R. P. (1990) Critical points, large-dimensionality expansions, and the Ising spin glass. In Grimmett, G. R. and Welsh, D. J. A., eds., Disorder in Physical Systems. Clarendon Press.Google Scholar
[7]Gaunt, D. S. (1986) 1/d expansions for critical amplitudes. J. Phys. A: Math. Gen. 19 L149–L153.CrossRefGoogle Scholar
[8]Gaunt, D. S. and Ruskin, H. (1978) Bond percolation processes in d dimensions. J. Phys. A: Math. Gen. 11 13691380.CrossRefGoogle Scholar
[9]Gaunt, D. S., Sykes, M. F. and Ruskin, H. (1976) Percolation processes in d-dimensions. J. Phys. A: Math. Gen. 9 18991911.CrossRefGoogle Scholar
[10]Gerber, P. R. and Fisher, M. E. (1974) Critical temperatures of classical n-vector models on hypercubic lattices. Phys. Rev. B 10 46974703.CrossRefGoogle Scholar
[11]Gordon, D. M. (1991) Percolation in high dimensions. J. Lond. Math. Soc. (2) 44 373384.CrossRefGoogle Scholar
[12]Grimmett, G. (1989) Percolation. Springer-Verlag.CrossRefGoogle Scholar
[13]Guttmann, A. J. (1987) On the critical behaviour of self-avoiding walks. J. Phys. A: Math. Gen. 20 18391854.CrossRefGoogle Scholar
[14]Hammersley, J. M. and Morton, K. W. (1954) Poor man's Monte Carlo. J. Roy. Stat. Soc. B 16 2338.Google Scholar
[15]Hara, T. and Slade, G. (1990) Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 333391.CrossRefGoogle Scholar
[16]Hara, T. and Slade, G. (1990) The lace expansion for self-avoiding walk in five or more dimensions. Reviews in Math. Phys. 4 235327.CrossRefGoogle Scholar
[17]Hara, T. and Slade, G. (1992) Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147 101136.CrossRefGoogle Scholar
[18]Hara, T. and Slade, G. (1993) Unpublished note.Google Scholar
[19]Hara, T., Slade, G. and Sokal, A. D. (1993) New lower bounds on the self-avoiding-walk connective constant. J. Stat. Phys. 72 479517. Erratum. J. Stat. Phys. 78 1187–1188 (1995).CrossRefGoogle Scholar
[20]Kesten, H. (1964) On the number of self-avoiding walks. II. J. Math. Phys. 5 11281137.CrossRefGoogle Scholar
[21]Kesten, H. (1980) The critical probability of bond percolation on the square lattice equals ½. Comm. Math. Phys. 74 4159.CrossRefGoogle Scholar
[22]Kesten, H. (1990) Asymptotics in high dimensions for percolation. In Grimmett, G. R. and Welsh, D. J. A. eds., Disorder in Physical Systems. Clarendon Press.Google Scholar
[23]Madras, N. and Slade, G. (1993) The Self-Avoiding Walk. Birkhäuser.Google Scholar
[24]Nemirovsky, A. M., Freed, K. F., Ishinabe, T. and Douglas, J. F. (1992) End-to-end distance of a single self-interacting self-avoiding polymer chain: d −1 expansion. Phys. Lett. A 162 469474.CrossRefGoogle Scholar
[25]Nemirovsky, A. M., Freed, K. F., Ishinabe, T. and Douglas, J. F. (1992) Marriage of exact enumeration and 1/d expansion methods: Lattice model of dilute polymers. J. Stat. Phys. 67 10831108.CrossRefGoogle Scholar
[26]Nguyen, B. G. and Yang, W.-S. (1991) Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21 18091844.Google Scholar
[27]Slade, G. (1987) The diffusion of self-avoiding random walk in high dimensions. Comm. Math. Phys. 110 661683.CrossRefGoogle Scholar