Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:37:27.061Z Has data issue: false hasContentIssue false

Regular Partitions of Hypergraphs: Counting Lemmas

Published online by Cambridge University Press:  01 November 2007

VOJTĚCH RÖDL
Affiliation:
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA (e-mail: [email protected])
MATHIAS SCHACHT
Affiliation:
Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany (e-mail: [email protected])

Abstract

We continue the study of regular partitions of hypergraphs. In particular, we obtain corresponding counting lemmas for the regularity lemmas for hypergraphs from our paper ‘Regular Partitions of Hypergraphs: Regularity Lemmas’ (in this issue).

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Avart, C., Rödl, V. and Schacht, M.Every monotone 3-graph property is testable. SIAM J. Discrete Math. 21 (1)7392.CrossRefGoogle Scholar
[2]Cooley, O., Fountoulakis, N., Kühn, D. and Osthus, D. Embeddings and Ramsey numbers of sparse k-uniform hypergraphs. Submitted.Google Scholar
[3]Erdős, P., Frankl, P. and Rödl, V. (1986) The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin. 2 113121.CrossRefGoogle Scholar
[4]Frankl, P. and Rödl, V. (2002) Extremal problems on set systems. Random Struct. Alg. 20 131164.CrossRefGoogle Scholar
[5]Gowers, W. T. Hypergraph regularity and the multidimensional Szemerédi theorem. Submitted.Google Scholar
[6]Kohayakawa, Y., Rödl, V. and Skokan, J. (2002) Hypergraphs, quasi-randomness, and conditions for regularity. J. Combin. Theory Ser. A 97 307352.CrossRefGoogle Scholar
[7]Komlós, J., Shokoufandeh, A., Simonovits, M. and Szemerédi, E. (2002) The regularity lemma and its applications in graph theory. In Theoretical Aspects of Computer Science: Tehran 2000, Vol. 2292 of Lecture Notes in Computer Science, Springer, Berlin, pp. 84112.CrossRefGoogle Scholar
[8]Nagle, B., Rödl, V. and Schacht, M. (2006) The counting lemma for regular k-uniform hypergraphs. Random Struct. Alg. 28 113179.CrossRefGoogle Scholar
[9]Nagle, B., Rödl, V. and Schacht, M. (2006) Extremal hypergraph problems and the regularity method. In Topics in Discrete Mathematics, Vol. 26 of Algorithms Combin., Springer, Berlin, pp. 247278.CrossRefGoogle Scholar
[10]Nagle, B., Sayaka, O., Rödl, V. and Schacht, M. On the Ramsey number of sparse 3-graphs. Submitted.Google Scholar
[11]Rödl, V. and Schacht, M. (2007) Regular partitions of hypergraphs: regularity lemmas. Combin. Probab. Comput. 16 (6): 833885.CrossRefGoogle Scholar
[12]Rödl, V., Schacht, M., Siggers, M. and Tokushige, N. (2007) Integer and fractional packings of hypergraphs. J. Combin. Theory Ser. B 97 245268.CrossRefGoogle Scholar
[13]Rödl, V. and Skokan, J. (2004) Regularity lemma for k-uniform hypergraphs. Random Struct. Alg. 25 142.CrossRefGoogle Scholar
[14]Rödl, V. and Skokan, J. (2006) Applications of the regularity lemma for uniform hypergraphs. Random Struct. Alg. 28 180194.CrossRefGoogle Scholar
[15]Tao, T. (2006) A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113 12571280.CrossRefGoogle Scholar