Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T00:05:19.219Z Has data issue: false hasContentIssue false

On the Banach-Space-Valued Azuma Inequality and Small-Set Isoperimetry of Alon–Roichman Graphs

Published online by Cambridge University Press:  18 January 2012

ASSAF NAOR*
Affiliation:
Courant Institute, 251 Mercer Street, New York, NY 10012, USA (e-mail: [email protected])

Abstract

We discuss the connection between the expansion of small sets in graphs, and the Schatten norms of their adjacency matrices. In conjunction with a variant of the Azuma inequality for uniformly smooth normed spaces, we deduce improved bounds on the small-set isoperimetry of Abelian Alon–Roichman random Cayley graphs.

Type
Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ahlswede, R. and Winter, A. (2002) Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory 48 569579.CrossRefGoogle Scholar
[2]Alon, N. and Milman, V. D. (1985) λ1, isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38 7388.Google Scholar
[3]Alon, N. and Roichman, Y. (1994) Random Cayley graphs and expanders. Random Struct. Alg. 5 271284.CrossRefGoogle Scholar
[4]Alon, N. and Spencer, J. H. (2000) The Probabilistic Method, second edition, Wiley–Interscience Series in Discrete Mathematics and Optimization.Google Scholar
[5]Arora, S., Barak, B. and Steurer, D. (2010) Subexponential algorithms for unique games and related problems. In 51th Annual IEEE Symposium on Foundations of Computer Science, pp. 563–572.Google Scholar
[6]Ball, K., Carlen, E. A. and Lieb, E. H. (1994) Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115 463482.CrossRefGoogle Scholar
[7]Buĭ-Min, Či and Gurariĭ, V. I. (1969) Certain characteristics of normed spaces and their application to the generalization of Parseval's equality to Banach spaces. Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 8 7491.Google Scholar
[8]Christofides, D. and Markström, K. (2008) Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales. Random Struct. Alg. 32 88100.Google Scholar
[9]Figiel, T. (1976) On the moduli of convexity and smoothness. Studia Math. 56 121155.CrossRefGoogle Scholar
[10]Hanner, O. (1956) On the uniform convexity of Lp and lp. Ark. Mat. 3 239244.Google Scholar
[11]Landau, Z. and Russell, A. (2004) Random Cayley graphs are expanders: a simple proof of the Alon–Roichman theorem. Electron. J. Combin. 11 #62 (electronic).CrossRefGoogle Scholar
[12]Lindenstrauss, J. (1963) On the modulus of smoothness and divergent series in Banach spaces. Michigan Math. J. 10 241252.CrossRefGoogle Scholar
[13]Lindenstrauss, J. and Tzafriri, L. (1979) Classical Banach spaces II, Vol. 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer.CrossRefGoogle Scholar
[14]Loh, P.-S. and Schulman, L. J. (2004) Improved expansion of random Cayley graphs. Discrete Math. Theor. Comput. Sci. 6 523528 (electronic).Google Scholar
[15]Lust-Piquard, F. (1986) Inégalités de Khintchine dans Cp(1 < p < ∞). CR Acad. Sci. Paris Sér. I Math. 303 289292.Google Scholar
[16]Lust-Piquard, F. and Pisier, G. (1991) Noncommutative Khintchine and Paley inequalities. Ark. Mat. 29 241260.CrossRefGoogle Scholar
[17]Pak, I. (1999) Random Cayley graphs with O(log∣G∣) generators are expanders. In Algorithms: ESA'99 (Prague), Vol. 1643 of Lecture Notes in Computer Science, Springer, pp. 521526.CrossRefGoogle Scholar
[18]Pisier, G. (1975) Martingales with values in uniformly convex spaces. Israel J. Math. 20 326350.CrossRefGoogle Scholar
[19]Tanner, R. M. (1984) Explicit concentrators from generalized N-gons. SIAM J. Algebraic Discrete Methods 5 287293.Google Scholar
[20]Tomczak-Jaegermann, N. (1974) The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp(1 ≤ p < ∞). Studia Math. 50 163182.Google Scholar
[21]Tropp, J. (2010) User-friendly tail bounds for matrix martingales. http://arxiv.org/abs/1004.4389.Google Scholar
[22]Wigderson, A. and Xiao, D. (2008) Derandomizing the Ahlswede–Winter matrix-valued Chernoff bound using pessimistic estimators, and applications. Theory Comput. 4 5376.CrossRefGoogle Scholar
[23]Zygmund, A. (2002) Trigonometric Series, Vols I, II, third edition, Cambridge Mathematical Library, Cambridge University Press.Google Scholar