Published online by Cambridge University Press: 02 February 2012
A graph is claw-free if it does not contain an induced subgraph isomorphic to K1,3. Cycles in claw-free graphs have been well studied. In this paper we extend results on disjoint cycles in claw-free graphs satisfying certain minimum degree conditions. In particular, we prove that if G is claw-free of sufficiently large order n = 3k with δ(G) ≥ n/2, then G contains k disjoint triangles.