Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-03T19:26:58.838Z Has data issue: false hasContentIssue false

Minimization Problems for Infinite n-Connected Graphs

Published online by Cambridge University Press:  12 September 2008

R. Halin
Affiliation:
Mathematisches Seminar der Universität Hamburg, Bundesstraße 55, D-20146, Hamburg, Germany

Abstract

A graph G is called n-minimizable if it can be reduced, by deleting a set of its edges, to a minimally n-connected graph. It is shown that, if n-connected graphs G and H differ only by finitely many vertices and edges, then G is n-minimizable if and only if H is n-minimizable (Theorem 4.12). In the main result, conditions are given that a tree decomposition of an n-connected graph G must satisfy in order to guarantee that the n-minimizability of each of the members of this decomposition implies the n-minimizability of the graph G (Theorem 6.5).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Diestel, R. (1990) Graph decompositions: a study in infinite graph theory. Oxford University Press, Oxford.CrossRefGoogle Scholar
[2]Diestel, R. (to appear) On spanning trees and k-connectedness in infinite graphs. J. Combin. Theory.Google Scholar
[3]Halin, R. (1964) Über unendliche Wege in Graphen. Math. Ann. 157 125137.CrossRefGoogle Scholar
[4]Halin, R. (1965) Charakterisierung der Graphen ohne unendliche Wege. Arch. Math. 16 227231.CrossRefGoogle Scholar
[5]Halin, R. (1965) Über die Maximalzahl fremder unendlicher Wege in Graphen. Math. Nachr. 30 6385.CrossRefGoogle Scholar
[6]Halin, R. (1971) Unendliche minimale n-fach zusammenhängende Graphen. Abh. Math. Sem. Univ. Hamburg 36 7588.CrossRefGoogle Scholar
[7]Mader, W. (1972) Über minimal n-fach zusammenhängende, unendliche Graphen und ein Extremalproblem. Arch. Math. 23 553560.CrossRefGoogle Scholar
]Schmidt, R. (1982) Ein Reduktionsverfahren für Weg-endliche Graphen, PhD-Thesis HamburgGoogle Scholar
[9]Schmidt, R. (1983) Ein Ordnungsbegriff für Graphen ohne unendliche Wege mit einer Anwendung auf n-fach zusammenhängende Graphen. Arch. Math. 40 283288.CrossRefGoogle Scholar