No CrossRef data available.
Published online by Cambridge University Press: 27 July 2017
Consider the complete graph on n vertices, with edge weights drawn independently from the exponential distribution with unit mean. Janson showed that the typical distance between two vertices scales as log n/n, whereas the diameter (maximum distance between any two vertices) scales as 3 log n/n. Bollobás, Gamarnik, Riordan and Sudakov showed that, for any fixed k, the weight of the Steiner tree connecting k typical vertices scales as (k − 1)log n/n, which recovers Janson's result for k = 2. We extend this to show that the worst case k-Steiner tree, over all choices of k vertices, has weight scaling as (2k − 1)log n/n and finally, we generalize this result to Steiner trees with a mixture of typical and worst case vertices.