Article contents
Information Transmission under Random Emission Constraints
Published online by Cambridge University Press: 04 September 2014
Abstract
We model the transmission of a message on the complete graph with n vertices and limited resources. The vertices of the graph represent servers that may broadcast the message at random. Each server has a random emission capital that decreases at each emission. Quantities of interest are the number of servers that receive the information before the capital of all the informed servers is exhausted and the exhaustion time. We establish limit theorems (law of large numbers, central limit theorem and large deviation principle), as n → ∞, for the proportion of informed vertices before exhaustion and for the total duration. The analysis relies on a construction of the transmission procedure as a dynamical selection of successful nodes in a Galton–Watson tree with respect to the success epochs of the coupon collector problem.
- Type
- Paper
- Information
- Combinatorics, Probability and Computing , Volume 23 , Issue 6: Honouring the Memory of Philippe Flajolet - Part 2 , November 2014 , pp. 973 - 1009
- Copyright
- Copyright © Cambridge University Press 2014
References
- 7
- Cited by