Published online by Cambridge University Press: 01 March 1997
A tournament T on a set V of n players is an orientation of the edges of the complete graph Kn on V; T will be called a random tournament if the directions of these edges are determined by a sequence {Yj[ratio ]j = 1, …, (n2)} of independent coin flips. If (y, x) is an edge in a (random) tournament, we say that y beats x. A set A ⊂ V, |A| = k, is said to be beaten if there exists a player y ∉ A such that y beats x for each x ∈ A. If such a y does not exist, we say that A is unbeaten. A (random) tournament on V is said to have property Sk if each k-element subset of V is beaten. In this paper, we use the Stein–Chen method to show that the probability distribution of the number W0 of unbeaten k-subsets of V can be well-approximated by that of a Poisson random variable with the same mean; an improved condition for the existence of tournaments with property Sk is derived as a corollary. A multivariate version of this result is proved next: with Wj representing the number of k-subsets that are beaten by precisely j external vertices, j = 0, 1, …, b, it is shown that the joint distribution of (W0, W1, …, Wb) can be approximated by a multidimensional Poisson vector with independent components, provided that b is not too large.