Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T15:37:33.208Z Has data issue: false hasContentIssue false

A fast new algorithm for weak graph regularity

Published online by Cambridge University Press:  03 May 2019

Jacob Fox
Affiliation:
Department of Mathematics, Stanford University, Stanford, CA 94305, USA
László Miklós Lovász*
Affiliation:
Department of Mathematics, MIT, Cambridge, MA 02139, USA
Yufei Zhao
Affiliation:
Department of Mathematics, MIT, Cambridge, MA 02139, USA
*
*Corresponding author. Email: [email protected]

Abstract

We provide a deterministic algorithm that finds, in ɛ-O(1)n2 time, an ɛ-regular Frieze–Kannan partition of a graph on n vertices. The algorithm outputs an approximation of a given graph as a weighted sum of ɛ-O(1) many complete bipartite graphs.

As a corollary, we give a deterministic algorithm for estimating the number of copies of H in an n-vertex graph G up to an additive error of at most ɛnv(H), in time ɛ-OH(1)n2.

Type
Paper
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

J. Fox is supported by a Packard Fellowship, by NSF CAREER award DMS 1352121, and by an Alfred P. Sloan Fellowship.

L. M. Lovász is supported by NSF Postdoctoral Fellowship Award DMS 1705204.

§

Y. Zhao is supported by NSF awards DMS-1362326 and DMS-1764176, and the MIT Solomon Buchsbaum Fund.

References

Alon, N., Duke, R. A., Lefmann, H., Rödl, V. and Yuster, R. (1994) The algorithmic aspects of the regularity lemma. J. Algorithms 16 80109.CrossRefGoogle Scholar
Dellamonica, D., Kalyanasundaram, S., Martin, D., Rödl, V. and Shapira, A. (2012) A deterministic algorithm for the Frieze–Kannan regularity lemma. SIAM J. Discrete Math. 26 1529.CrossRefGoogle Scholar
Dellamonica, D. Jr., Kalyanasundaram, S., Martin, D. M., Rödl, V. and Shapira, A. (2015) An optimal algorithm for finding Frieze–Kannan regular partitions. Combin. Probab. Comput. 24 407437.CrossRefGoogle Scholar
Duke, R. A., Lefmann, H. and Rödl, V. (1995) A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comput. 24 598620.CrossRefGoogle Scholar
Fox, J., Lovász, L. M. and Zhao, Y. (2018) Erratum for ‘On regularity lemmas and their algorithmic applications’. Combin. Probab. Comput. 27 851852.CrossRefGoogle Scholar
Fox, J., Lovász, L. M. and Zhao, Y. (2017) On regularity lemmas and their algorithmic applications. Combin. Probab. Comput. 26 481505.CrossRefGoogle Scholar
Frieze, A. and Kannan, R. (1996) The regularity lemma and approximation schemes for dense problems. In 37th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, pp. 1220.Google Scholar
Frieze, A. and Kannan, R. (1999) Quick approximation to matrices and applications. Combinatorica 19 175220.CrossRefGoogle Scholar
Gabber, O. and Galil, Z. (1981) Explicit constructions of linear-sized superconcentrators. J. Comput. System Sci. 22 407420.CrossRefGoogle Scholar
Kohayakawa, Y., Rödl, V. and Thoma, L. (2003) An optimal algorithm for checking regularity. SIAM J. Comput. 32 12101235.CrossRefGoogle Scholar
Lovász, L. and Szegedy, B. (2007) Szemerédi’s lemma for the analyst. Geom. Funct. Anal. 17 252270.CrossRefGoogle Scholar
Lubotzky, A., Phillips, R. and Sarnak, P. (1988) Ramanujan graphs. Combinatorica 8 261277.CrossRefGoogle Scholar
Margulis, G. A. (1973) Explicit constructions of expanders. Problemy Peredači Informacii 9 7180.Google Scholar
Margulis, G. A. (1988) Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24 5160.Google Scholar
Morgenstern, M. (1994) Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q . J. Combin. Theory Ser. B 62 4462.CrossRefGoogle Scholar
Reingold, O., Vadhan, S. and Wigderson, A. (2002) Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2) 155 157187.CrossRefGoogle Scholar
Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 199245.CrossRefGoogle Scholar
Szemerédi, E. (1978) Regular partitions of graphs. Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, Vol. 260, CNRS, Paris, pp. 399401.Google Scholar