Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T11:48:57.619Z Has data issue: false hasContentIssue false

Counting Certain Pairings in Arbitrary Groups

Published online by Cambridge University Press:  11 October 2011

Y. O. HAMIDOUNE*
Affiliation:
Université Pierre et Marie Curie (Paris 6), Institut de Mathématiques de Jussieu, Combinatoire et Optimisation, Case 189, 4 Place Jussieu, 75005 Paris, France

Abstract

In this paper, we study certain pairings which are defined as follows: if A and B are finite subsets of an arbitrary group, a Wakeford–Fan–Losonczy pairing from B onto A is a bijection φ : BA such that bφ(b) ∉ A, for every bB. The number of such pairings is denoted by μ(B, A).

We investigate the quantity μ(B, A) for A and B, two finite subsets of an arbitrary group satisfying 1 ∉ B, |A| = |B|, and the fact that the order of every element of B is ≥ |B| + 1. Extending earlier results, we show that in this case, μ(B, A) is never equal to 0. Furthermore we prove an explicit lower bound on μ(B, A) in terms of |B| and the cardinality of the group generated by B, which is valid unless A and B have a special form explicitly described. In the case A = B, our bound holds unless B is a translate of a progression.

Type
Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Chowla, S. (1935) A theorem on the addition of residue classes: Applications to the number Γ(k) in Waring's problem. Proc. Indian Acad. Sci. 2 242243.CrossRefGoogle Scholar
[2]Eliahou, S. and Lecouvey, C. (2008) Matchings in arbitrary groups. Adv. Appl. Math. 40 219224.CrossRefGoogle Scholar
[3]Erdős, P. and Heilbronn, H. (1964) On the addition of residue classes mod p. Acta Arith. 9 149159.Google Scholar
[4]Fan, C. K. and Losonczy, J. (1996) Matchings and canonical forms in symmetric tensors. Adv. Math. 117 228238.Google Scholar
[5]Fournier, J. C. (2003) Combinatorics of perfect matchings in plane bipartite graphs and application to tilings. Theoret. Comput. Sci. 303 333351.Google Scholar
[6]Hall, P. (1935) On representatives of subsets. J. London Math. Soc. 10 2630.Google Scholar
[7]Hamidoune, Y. O. (1984) On the connectivity of Cayley digraphs. Europ. J. Combin. 5 309312.CrossRefGoogle Scholar
[8]Hamidoune, Y. O. (1996) An isoperimetric method in additive theory. J. Algebra 179 622630.Google Scholar
[9]Hamidoune, Y. O. (1997) On subsets with a small sum in abelian groups I: The Vosper property. Europ. J. Combin. 18 541556.CrossRefGoogle Scholar
[10]Hamidoune, Y. O. (1999) On small subset product in a group. In Structure Theory of Set-Addition, Vol. 258 of Astérisque, pp. 281–308.Google Scholar
[11]Hamidoune, Y. O. (2000) Some results in additive number theory I: The critical pair theory. Acta Arith. 96 97119.Google Scholar
[12]Hamidoune, Y. O. (2008) On group bijections φ with φ(B) = A and ∀aB, aφ(a) ∉ A. arXiv:0812.2522.Google Scholar
[13]Hamidoune, Y. O. Hyper-atoms and the Kemperman's critical pair theory, arXiv.0708.3581.Google Scholar
[14]Hamidoune, Y. O. Hyper-atoms applied to the critical pair theory. Submitted. arXiv:1102.2099v1Google Scholar
[15]Kemperman, J. H. B. (1956) On complexes in a semigroup. Nederl. Akad. Wetensch. Proc. Ser. A 59 247254.Google Scholar
[16]Kneser, M. (1953) Abschätzung der asymptotischen Dichte von Summenmengen. Math. Z. 58 459484.CrossRefGoogle Scholar
[17]Losonczy, J. (1998) On matchings in groups. Adv. Appl. Math. 20 385391.CrossRefGoogle Scholar
[18]Lovász, L. and Plummer, M. D. (1986) Matching theory. Ann. Discrete Math. 29.Google Scholar
[19]Olson, J. E. (1975/76) Sums of sets of group elements. Acta Arith. 28 147156.Google Scholar
[20]Olson, J. E. (1984) On the sum of two sets in a group. J. Number Theory 18 110120.Google Scholar
[21]Plagne, A. (2011) Yahya ould Hamidoune, grand Mauritanien, homme singulier, mathématicien d'exception. Gaz. Math. 129 123129.Google Scholar
[22]Plagne, A. (2011) Yahya ould Hamidoune, the Mauritanian mathematician. Combin. Probab. Comput. 20 641645.Google Scholar
[23]Scherk, P. and Moser, L. (1955) Advanced problems and solutions: Solutions, 4466. Amer. Math. Monthly 62 4647.Google Scholar
[24]Wakeford, E. K. (1918/1919) On canonical forms. Proc. London Math. Soc. 18 403410.Google Scholar