Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T23:19:31.379Z Has data issue: false hasContentIssue false

Almost all Berge Graphs are Perfect

Published online by Cambridge University Press:  12 September 2008

Hans Jürgen Prömel
Affiliation:
Institut für Diskrete Mathematik, Universität Bonn, Nassestr. 2, 5300 Bonn, Germany
Angelika Steger
Affiliation:
Institut für Diskrete Mathematik, Universität Bonn, Nassestr. 2, 5300 Bonn, Germany

Abstract

Let Per f(n) denote the set of all perfect graphs on n vertices and let Berge(n) denote the set of all Berge graphs on n vertices. The strong perfect graph conjecture states that Per f(n) = Berge(n) for all n. In this paper we prove that this conjecture is at least asymptotically true, i.e. we show that

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bruijn, N. G. De. Asymptotic Methods in Analysis. North-Holland Publishing, Amsterdam, 1958.Google Scholar
[2] Erdős, P., Kleitman, D. J. and Rothschild, B. L.. Asymptotic enumeration of Kn—free graphs. In International Colloquium on Combinatorial Theory. Atti dei Convegni Lincei 17, Vol. 2, Rome, pp. 1927, (1976).Google Scholar
[3] Hayward, R.. Weakly triangulated graphs. J. Combin. Theory, Series B 39 pp. 200209, (1985).CrossRefGoogle Scholar
[4] Kleitman, D. J. and Rothschild, B. L.. Asymptotic enumeration of partial orders on a finite set. Trans. Amer. Math. Soc. 205 pp. 205220, (1975).CrossRefGoogle Scholar
[5] Kolaitis, Ph.G., Prömel, H. J. and Rothschild, B. L.. K1+1-free graphs: asymptotic structure and a 0–1–law. Trans. Amer. Math. Soc. 303 pp. 637671, (1987).Google Scholar
[6] Prömel, H. J. and Steger, A.. Excluding induced subgraphs: quadrilaterals. Random Struct. Alg. 2, pp. 5571, (1991).CrossRefGoogle Scholar
[7] Prömel, H. J. and Steger, A.. Excluding induced subgraphs III: a general asymptotic. Random Struct. Alg. 3, pp. 1931, (1992).CrossRefGoogle Scholar
[8] Prömel, H. J. and Steger, A.. Random l-colorable graphs. Forschungsinstitut für Diskrete Mathe-matik, Universität Bonn, 1992.Google Scholar
[9] Szemerédi, E.. Regular partitions of graphs. In Problémes en combinatoire et théorie des graphes C.N.R.S., Paris, pp. 399401, (1978).Google Scholar