Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T22:01:35.236Z Has data issue: false hasContentIssue false

All Maximum Size Two-Part Sperner Systems: In Short

Published online by Cambridge University Press:  01 July 2007

HAROUT AYDINIAN
Affiliation:
Department of Mathematics, University of Bielefeld, PO Box 100131, D-33501, Bielefeld, Germany (e-mail: [email protected])
PÉTER L. ERDŐS
Affiliation:
A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, PO Box 127, H-1364Hungary (e-mail: [email protected])

Abstract

In this note we give a very short proof for the description of all maximum size two-part Sperner systems.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Erdős, Paul (1945) On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51 898902.CrossRefGoogle Scholar
[2]Erdős, P. L. and Katona, G. O. H. (1986) Convex hulls of more-part Sperner families. Graphs Combin. 2 123134.CrossRefGoogle Scholar
[3]Erdős, P. L. and Katona, G. O. H. (1986) All maximum 2-part Sperner families. J. Combin. Theory Ser. A 43 5869.CrossRefGoogle Scholar
[4]Erdős, P. L., Füredi, Z. and Katona, G. O. H. (2005) Two-part and k-Sperner families: New proofs using permutations. SIAM J. Discrete Math. 19 489500.CrossRefGoogle Scholar
[5]Füredi, Z., Griggs, J. R., Odlyzko, A. M. and Shearer, J. M. (1987) Ramsey–Sperner theory. Discrete Math. 63 143152.CrossRefGoogle Scholar
[6]Katona, G. O. H. (1966) On a conjecture of Erdős and a stronger form of Sperner's theorem. Studia Sci. Math. Hungar. 1 5963.Google Scholar
[7]Katona, G. O. H. (2000) The cycle method and its limits. In Numbers, Information and Complexity (Althöfer, et al. , eds), Kluwer, pp. 129141.CrossRefGoogle Scholar
[8]Kleitman, D. J. (1965) On a lemma of Littlewood and Offord on the distribution of certain sums. Math. Z. 90 251259.CrossRefGoogle Scholar
[9]Shahriari, S. (1996) On the structure of maximum 2-part Sperner families. Discrete Math. 162 229238.CrossRefGoogle Scholar