Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T19:10:11.188Z Has data issue: false hasContentIssue false

Sums of Dilates

Published online by Cambridge University Press:  01 September 2008

BORIS BUKH*
Affiliation:
Department of Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA (e-mail: [email protected])

Abstract

The λ-dilate of a set A is λċA={λa : aA}. We give an asymptotically sharp lower bound on the size of sumsets of the form λ1ċA+ċċċ+λkċA for arbitrary integers λ1,. . .,λk and integer sets A. We also establish an upper bound for such sums, which is similar to, but often stronger than Plünnecke's inequality.

Type
Paper
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bilu, Y. (1999) Structure of sets with small sumset. Astérisque 258 (Structure Theory of Set Addition) 77108.Google Scholar
[2]Bukh, B. (2008) Non-trivial solutions to a linear equation in integers. Acta Arith. 131. 5155. arXiv:math/0703767.CrossRefGoogle Scholar
[3]Garaev, M. Z. (2007) An explicit sum-product estimate in . Int. Math. Res. Not. IMRN issue 11, Art ID rnm 035, 11 pp. arXiv:math/0702780v1.Google Scholar
[4]Gyarmati, K., Ruzsa, I. Z. and Matolcsi, M. (2007) A superadditivity and submultiplicativity property for cardinalities of sumsets. arXiv:0707.2707v1.Google Scholar
[5]Katz, N. H. and Shen, C.-Y. (2007) A slight improvement to Garaev's sum product estimate. arXiv:math/0703614v1.Google Scholar
[6]Konyagin, S. and Łaba, I. (2006) Distance sets of well-distributed planar sets for polygonal norms. Israel J. Math. 152 157179. http://www.math.ubc.ca/~ilaba/preprints/polyg_distances.pdf.CrossRefGoogle Scholar
[7]Nathanson, M. B. (2007) Inverse problems for linear forms over finite sets of integers. arXiv:0708.2304v2.CrossRefGoogle Scholar
[8]Nathanson, M. B., O'Bryant, K., Orosz, B., Ruzsa, I. and Silva, M. (2007) Binary linear forms over finite sets of integers. Acta Arith. 129 341361. arXiv:math/0701001.Google Scholar
[9]Ruzsa, I. Z. (1989) An application of graph theory to additive number theory. Scientia Ser. A Official Journal of Universidad Técnica Federico Santa María) 3 97109.Google Scholar
[10]Ruzsa, I. Z. (1999) An analog of Freiman's theorem in groups. Astérisque 258 (Structure Theory of Set Addition) 323326.Google Scholar