Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T14:41:51.330Z Has data issue: false hasContentIssue false

Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part I: major depressive disorder

Published online by Cambridge University Press:  05 March 2013

Mark J. Niciu*
Affiliation:
National Institutes of Health (NIH)/National Institute of Mental Health (NIMH), Experimental Therapeutics and Pathophysiology Branch (ETPB), Intramural Research Program, Bethesda, Maryland, USA
Dawn F. Ionescu
Affiliation:
National Institutes of Health (NIH)/National Institute of Mental Health (NIMH), Experimental Therapeutics and Pathophysiology Branch (ETPB), Intramural Research Program, Bethesda, Maryland, USA
Daniel C. Mathews
Affiliation:
National Institutes of Health (NIH)/National Institute of Mental Health (NIMH), Experimental Therapeutics and Pathophysiology Branch (ETPB), Intramural Research Program, Bethesda, Maryland, USA
Erica M. Richards
Affiliation:
National Institutes of Health (NIH)/National Institute of Mental Health (NIMH), Experimental Therapeutics and Pathophysiology Branch (ETPB), Intramural Research Program, Bethesda, Maryland, USA
Carlos A. Zarate Jr.
Affiliation:
National Institutes of Health (NIH)/National Institute of Mental Health (NIMH), Experimental Therapeutics and Pathophysiology Branch (ETPB), Intramural Research Program, Bethesda, Maryland, USA Psychiatry and Behavioral Sciences, The George Washington University
*
Address for correspondence: Dr. Mark J. Niciu, National Institutes of Health(NIH)/National Institute of Mental Health(NIMH), Experimental Therapeutics and Pathophysiology Branch(ETPB), Intramural Research Program, 10 Center Dr., Building 10/CRC, Room 7-5545, Bethesda, MD 20814-9692, USA. Email [email protected]

Abstract

The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic (serotonin, norepinephrine, dopamine) and amino acid [γ-aminobutyric acid (GABA), glutamate] receptors at the plasma membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic and amino acid–based treatments. In this review, we will discuss the evidence in support of intracellular mediators in the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD). More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and others), p11, Wnt/Fz/Dvl/GSK3β, and NFκB/ΔFosB. We will also discuss recent discoveries with rapidly acting antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets for therapeutic intervention. Finally, future clinical implications are discussed.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sleight, AJ, Carolo, C, Petit, N, Zwingelstein, C, Bourson, A. Identification of 5-hydroxytryptamine7 receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment. Mol Pharmacol. 1995; 47(1): 99103.Google ScholarPubMed
2.Svenningsson, P, Tzavara, ET, Witkin, JM, etal. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci U S A. 2002; 99(5): 31823187.CrossRefGoogle ScholarPubMed
3.Menkes, DB, Rasenick, MM, Wheeler, MA, Bitensky, MW. Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long-term antidepressant treatment. Science. 1983; 219(4580): 6567.CrossRefGoogle ScholarPubMed
4.Ozawa, H, Rasenick, MM. Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J Neurochem. 1991; 56(1): 330338.CrossRefGoogle Scholar
5.Nestler, EJ, Terwilliger, RZ, Duman, RS. Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem. 1989; 53(5): 16441647.CrossRefGoogle ScholarPubMed
6.Nibuya, M, Nestler, EJ, Duman, RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci. 1996; 16(7): 23652372.CrossRefGoogle ScholarPubMed
7.Conti, AC, Cryan, JF, Dalvi, A, Lucki, I, Blendy, JA. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci. 2002; 22(8): 32623268.CrossRefGoogle ScholarPubMed
8.Thome, J, Sakai, N, Shin, K, etal. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci. 2000; 20(11): 40304036.CrossRefGoogle ScholarPubMed
9.Zhang, HT. Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs. Curr Pharm Des. 2009; 15(14): 16881698.CrossRefGoogle ScholarPubMed
10.Fujita, M, Hines, CS, Zoghbi, SS, etal. Downregulation of brain phosphodiesterase type IV measured with (11)C-(R)-rolipram positron emission tomography in major depressive disorder. Biol Psychiatry. 2012; 72(7): 548554.CrossRefGoogle Scholar
11.Fleischhacker, WW, Hinterhuber, H, Bauer, H, etal. A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. Neuropsychobiology. 1992; 26(1–2): 5964.CrossRefGoogle ScholarPubMed
12.Fujimaki, K, Morinobu, S, Duman, RS. Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology. 2000; 22(1): 4251.CrossRefGoogle ScholarPubMed
13.Itoh, T, Tokumura, M, Abe, K. Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats. Eur J Pharmacol. 2004; 498(1–3): 135142.CrossRefGoogle ScholarPubMed
14.Tanis, KQ, Duman, RS. Intracellular signaling pathways pave roads to recovery for mood disorders. Ann Med. 2007; 39(7): 531544.CrossRefGoogle ScholarPubMed
15.Duman, RS, Monteggia, LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006; 59(12): 11161127.CrossRefGoogle ScholarPubMed
16.Nibuya, M, Morinobu, S, Duman, RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995; 15(11): 75397547.CrossRefGoogle ScholarPubMed
17.Russo-Neustadt, A, Beard, RC, Cotman, CW. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology. 1999; 21(5): 679682.CrossRefGoogle ScholarPubMed
18.Siuciak, JA, Lewis, DR, Wiegand, SJ, Lindsay, RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav. 1997; 56(1): 131137.CrossRefGoogle ScholarPubMed
19.Shirayama, Y, Chen, AC, Nakagawa, S, Russell, DS, Duman, RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002; 22(8): 32513261.CrossRefGoogle ScholarPubMed
20.Monteggia, LM, Barrot, M, Powell, CM, etal. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A. 2004; 101(29): 1082710832.CrossRefGoogle ScholarPubMed
21.Heine, VM, Zareno, J, Maslam, S, Joels, M, Lucassen, PJ. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci. 2005; 21(5): 13041314.CrossRefGoogle ScholarPubMed
22.Segi-Nishida, E, Warner-Schmidt, JL, Duman, RS. Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci U S A. 2008; 105(32): 1135211357.CrossRefGoogle ScholarPubMed
23.Elfving, B, Wegener, G. Electroconvulsive seizures stimulate the VEGF pathway via mTORC1. Synapse. 2012; 66(4): 340345.CrossRefGoogle ScholarPubMed
24.Greene, J, Banasr, M, Lee, B, Warner-Schmidt, J, Duman, RS. Vascular endothelial growth factor signaling is required for the behavioral actions of antidepressant treatment: pharmacological and cellular characterization. Neuropsychopharmacology. 2009; 34(11): 24592468.CrossRefGoogle ScholarPubMed
25.Lee, JS, Jang, DJ, Lee, N, etal. Induction of neuronal vascular endothelial growth factor expression by cAMP in the dentate gyrus of the hippocampus is required for antidepressant-like behaviors. J Neurosci. 2009; 29(26): 84938505.CrossRefGoogle ScholarPubMed
26.Isung, J, Mobarrez, F, Nordstrom, P, Asberg, M, Jokinen, J. Low plasma vascular endothelial growth factor (VEGF) associated with completed suicide. World J Biol Psychiatry. 2012; 13(6): 468473.CrossRefGoogle ScholarPubMed
27.Ibrahim, L, Duncan, W, Luckenbaugh, DA, etal. Rapid antidepressant changes with sleep deprivation in major depressive disorder are associated with changes in vascular endothelial growth factor (VEGF): a pilot study. Brain Res Bull. 2011; 86(1–2): 129133.CrossRefGoogle ScholarPubMed
28.Halmai, Z, Dome, P, Dobos, J, etal. Peripheral vascular endothelial growth factor level is associated with antidepressant treatment response: results of a preliminary study. J Affect Disord. 2013; 144(3): 269273.CrossRefGoogle ScholarPubMed
29.Minelli, A, Zanardini, R, Abate, M, etal. Vascular endothelial growth factor (VEGF) serum concentration during electroconvulsive therapy (ECT) in treatment resistant depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(5): 13221325.CrossRefGoogle Scholar
30.Viikki, M, Anttila, S, Kampman, O, etal. Vascular endothelial growth factor (VEGF) polymorphism is associated with treatment resistant depression. Neurosci Lett. 2010; 477(3): 105108.CrossRefGoogle ScholarPubMed
31.Tsai, SJ, Hong, CJ, Liou, YJ, etal. Haplotype analysis of single nucleotide polymorphisms in the vascular endothelial growth factor (VEGFA) gene and antidepressant treatment response in major depressive disorder. Psychiatry Res. 2009; 169(2): 113117.CrossRefGoogle ScholarPubMed
32.Clemmons, DR. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov. 2007; 6(10): 821833.CrossRefGoogle ScholarPubMed
33.Lesch, KP, Rupprecht, R, Muller, U, Pfuller, H, Beckmann, H. Insulin-like growth factor I in depressed patients and controls. Acta Psychiatr Scand. 1988; 78(6): 684688.CrossRefGoogle ScholarPubMed
34.Deuschle, M, Blum, WF, Strasburger, CJ, etal. Insulin-like growth factor-I (IGF-I) plasma concentrations are increased in depressed patients. Psychoneuroendocrinology. 1997; 22(7): 493503.CrossRefGoogle ScholarPubMed
35.Weber-Hamann, B, Blum, WF, Kratzsch, J, etal. Insulin-like growth factor-I (IGF-I) serum concentrations in depressed patients: relationship to saliva cortisol and changes during antidepressant treatment. Pharmacopsychiatry. 2009; 42(1): 2328.CrossRefGoogle ScholarPubMed
36.Mitschelen, M, Yan, H, Farley, JA, etal. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a potential model of geriatric depression. Neuroscience. 2011; 185: 5060.CrossRefGoogle ScholarPubMed
37.Malberg, JE, Platt, B, Rizzo, SJ, etal. Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology. 2007; 32(11): 23602368.CrossRefGoogle ScholarPubMed
38.Park, SE, Dantzer, R, Kelley, KW, McCusker, RH. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. Journal of Neuroinflammation. 2011; 8: 12.CrossRefGoogle ScholarPubMed
39.Park, SE, Lawson, M, Dantzer, R, Kelley, KW, McCusker, RH. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. Journal of Neuroinflammation. 2011; 8: 179.CrossRefGoogle ScholarPubMed
40.Duman, CH, Schlesinger, L, Terwilliger, R, etal. Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res. 2009; 198(2): 366371.CrossRefGoogle Scholar
41.Schilling, C, Blum, WF, Heuser, I, etal. Treatment with antidepressants increases insulin-like growth factor-I in cerebrospinal fluid. J Clin Psychopharmacol. 2011; 31(3): 390392.CrossRefGoogle ScholarPubMed
42.Paslakis, G, Blum, WF, Deuschle, M. Intranasal insulin-like growth factor I (IGF-I) as a plausible future treatment of depression. Med Hypotheses. 2012; 79(2): 222225.CrossRefGoogle ScholarPubMed
43.Rajkowska, G, Miguel-Hidalgo, JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets. 2007; 6(3): 219233.CrossRefGoogle ScholarPubMed
44.Diniz, BS, Teixeira, AL, Miranda, AS, etal. Circulating glial-derived neurotrophic factor is reduced in late-life depression. J Psychiatr Res. 2012; 46(1): 135139.CrossRefGoogle ScholarPubMed
45.Tseng, PT, Lee, Y, Lin, PY. Age-associated decrease in serum glial cell line-derived neurotrophic factor levels in patients with major depressive disorder. Progr Neuropsychopharmacol Biol Psychiatry. 2013; 40: 334339.CrossRefGoogle ScholarPubMed
46.Zhang, X, Zhang, Z, Sha, W, etal. Electroconvulsive therapy increases glial cell-line derived neurotrophic factor (GDNF) serum levels in patients with drug-resistant depression. Psychiatry Res. 2009; 170(2–3): 273275.CrossRefGoogle ScholarPubMed
47.Liu, Q, Zhu, HY, Li, B, etal. Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression. J Affect Disord. 2012; 141(2–3): 367372.CrossRefGoogle Scholar
48.Otsuki, K, Uchida, S, Watanuki, T, etal. Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res. 2008; 42(14): 11451153.CrossRefGoogle ScholarPubMed
49.Golan, M, Schreiber, G, Avissar, S. Antidepressants elevate GDNF expression and release from C(6) glioma cells in a beta-arrestin1-dependent, CREB interactive pathway. Int J Neuropsychopharmacol. 2011; 14(10): 12891300.CrossRefGoogle Scholar
50.Uchida, S, Hara, K, Kobayashi, A, etal. Epigenetic status of GDNF in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011; 69(2): 359372.CrossRefGoogle ScholarPubMed
51.Svenningsson, P, Chergui, K, Rachleff, I, etal. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science. 2006; 311(5757): 7780.CrossRefGoogle ScholarPubMed
52.Anisman, H, Du, L, Palkovits, M, etal. Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects. J Psychiatry Neurosci. 2008; 33(2): 131141.Google ScholarPubMed
53.Warner-Schmidt, JL, Chen, EY, Zhang, X, etal. A role for p11 in the antidepressant action of brain-derived neurotrophic factor. Biol Psychiatry. 2010; 68(6): 528535.CrossRefGoogle ScholarPubMed
54.Zhang, L, Su, TP, Choi, K, etal. P11 (S100A10) as a potential biomarker of psychiatric patients at risk of suicide. J Psychiatr Res. 2011; 45(4): 435441.CrossRefGoogle ScholarPubMed
55.Su, TP, Zhang, L, Chung, MY, etal. Levels of the potential biomarker p11 in peripheral blood cells distinguish patients with PTSD from those with other major psychiatric disorders. J Psychiatr Res. 2009; 43(13): 10781085.CrossRefGoogle ScholarPubMed
56.Voleti, B, Duman, RS. The roles of neurotrophic factor and Wnt signaling in depression. Clin Pharmacol Ther. 2012; 91(2): 333338.CrossRefGoogle ScholarPubMed
57.Stamos, JL, Weis, WI. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013; 5(1). http://www.ncbi.nlm.nih.gov/pubmed/23169527.CrossRefGoogle ScholarPubMed
58.Inestrosa, NC, Arenas, E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010; 11: 7786.CrossRefGoogle ScholarPubMed
59.Matrisciano, F, Busceti, CL, Bucci, D, etal. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage. PLoS One. 2011; 6(1): e16447.CrossRefGoogle ScholarPubMed
60.Voleti, B, Tanis, KQ, Newton, SS, Duman, RS. Analysis of target genes regulated by chronic electroconvulsive therapy reveals role for Fzd6 in depression. Biol Psychiatry. 2012; 71(1): 5158.CrossRefGoogle ScholarPubMed
61.Machado-Vieira, R, Manji, HK, Zarate, CA Jr. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009; 11(suppl 2): 92109.CrossRefGoogle ScholarPubMed
62.Gould, TD, Einat, H, Bhat, R, Manji, HK. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol. 2004; 7(4): 387390.CrossRefGoogle ScholarPubMed
63.O'Brien, WT, Harper, AD, Jove, F, etal. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci. 2004; 24(30): 67916798.CrossRefGoogle ScholarPubMed
64.Okamoto, H, Voleti, B, Banasr, M, etal. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry. 2010; 68(6): 521527.CrossRefGoogle ScholarPubMed
65.Wilkinson, MB, Dias, C, Magida, J, etal. A novel role of the WNT-dishevelled-GSK3beta signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J Neurosci. 2011; 31: 90849092.CrossRefGoogle Scholar
66.Meffert, MK, Baltimore, D. Physiological functions for brain NF-kappaB. Trends Neurosci. 2005; 28(1): 3743.CrossRefGoogle ScholarPubMed
67.Frenois, F, Moreau, M, O'Connor, J, etal. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology. 2007; 32(5): 516531.CrossRefGoogle ScholarPubMed
68.Vialou, V, Maze, I, Renthal, W, etal. Serum response factor promotes resilience to chronic social stress through the induction of DeltaFosB. J Neurosci. 2010; 30(43): 1458514592.CrossRefGoogle ScholarPubMed
69.McClung, CA, Ulery, PG, Perrotti, LI, etal. DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res. 2004; 132(2): 146154.CrossRefGoogle ScholarPubMed
70.Ohnishi, YN, Ohnishi, YH, Hokama, M, etal. FosB is essential for the enhancement of stress tolerance and antagonizes locomotor sensitization by DeltaFosB. Biol Psychiatry. 2011; 70(5): 487495.CrossRefGoogle ScholarPubMed
71.Furmaga, H, Sadhu, M, Frazer, A. Comparison of DeltaFosB immunoreactivity induced by vagal nerve stimulation with that caused by pharmacologically diverse antidepressants. J Pharmacol Exp Ther. 2012; 341(12): 317325.CrossRefGoogle ScholarPubMed
72.Li, N, Lee, B, Liu, RJ, etal. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010; 329(5994): 959964.CrossRefGoogle ScholarPubMed
73.Denk, MC, Rewerts, C, Holsboer, F, Erhardt-Lehmann, A, Turck, CW. Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation. Am J Psychiatry. 2011; 168(7): 751752.CrossRefGoogle Scholar
74.Dwyer, JM, Lepack, AE, Duman, RS. mTOR activation is required for the antidepressant effects of mGluR(2)/(3) blockade. Int J Neuropsychopharmacol. 2012; 15(4): 429434.CrossRefGoogle Scholar
75.Autry, AE, Adachi, M, Nosyreva, E, etal. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011; 475(7354): 9195.CrossRefGoogle ScholarPubMed
76.Monteggia, LM, Gideons, E, Kavalali, ET. The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry In press. DOI: 10.1016/j.biopsych.2012.09.006.Google Scholar
77.Rush, AJ, Trivedi, MH, Wisniewski, SR, etal. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006; 163(11): 19051917.CrossRefGoogle ScholarPubMed
78.Rush, AJ, Trivedi, MH, Stewart, JW, etal. Combining medications to enhance depression outcomes (CO-MED): acute and long-term outcomes of a single-blind randomized study. Am J Psychiatry. 2011; 168(7): 689701.CrossRefGoogle ScholarPubMed
79.Zarate, CA Jr, Singh, JB, Carlson, PJ, etal. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006; 63(8): 856864.CrossRefGoogle ScholarPubMed
80.Zarate, CA Jr, Mathews, D, Ibrahim, L, etal. A randomized trial of a low-trapping nonselective n-methyl-d-aspartate channel blocker in major depression. Biol Psychiatry In press. DOI: 10.1016/j.biopsych.2012.10.019.Google Scholar
81.McCarthy, DJ, Alexander, R, Smith, MA, etal. Glutamate-based depression GBD. Med Hypotheses. 2012; 78(5): 675681.CrossRefGoogle ScholarPubMed