Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T13:18:41.314Z Has data issue: false hasContentIssue false

The role of the metabotropic glutamate receptor 5 in nicotine addiction

Published online by Cambridge University Press:  27 July 2020

Funda Akkus*
Affiliation:
Department of Psychiatry, University of Fribourg, Fribourg, Switzerland Psychiatrie St. Gallen Nord, Wil, Switzerland
Sylvia Terbeck
Affiliation:
School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
Connor J. Haggarty
Affiliation:
School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
Valerie Treyer
Affiliation:
Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
Janan J. Dietrich
Affiliation:
Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Stefanie Hornschuh
Affiliation:
Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Gregor Hasler
Affiliation:
Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
*
*Author for correspondence: Funda Akkus, Email: [email protected]

Abstract

This review summarizes the evidence for the potential involvement of metabotropic glutamate receptor 5 (mGluR5) in the development of nicotine addiction. Nicotine is consumed worldwide and is highly addictive. Previous research has extensively investigated the role of dopamine in association with reward learning and addiction, which has provided strong evidence for the involvement of dopaminergic neuronal circuitry in nicotine addiction. More recently, researchers focused on glutamatergic transmission after nicotine abuse, and its involvement in the reinforcing and rewarding effects of nicotine addiction. A number of robust preclinical and clinical studies have shown mGluR5 signaling as a facilitating mechanism of nicotine addiction and nicotine withdrawal. Specifically, clinical studies have illustrated lower cortical mGluR5 density in smokers compared to nonsmokers in the human brain. In addition, mGluR5 might selectively regulate craving and withdrawal. This suggests that mGluR5 could be a key receptor in the development of nicotine addiction and therefore clinical trials to examine the therapeutic potential of mGluR5 agents could help to contribute to reduce nicotine addiction in society.

Type
Review
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Koob, GF, Volkow, ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760773. doi: 10.1016/S2215-0366(16)00104-8.CrossRefGoogle ScholarPubMed
WHO. Tobacco, http://www.who.int/en/news-room/fact-sheets/detail/tobacco. 2018. Date accessed March 11 2020.Google Scholar
Collins, GB, Jerry, JM, Bales, R. Quitting smoking: still a challenge, but newer tools show promise. Cleve Clin J Med. 2015;82(1):3948. doi: 10.3949/ccjm.81a.14016.CrossRefGoogle Scholar
D’Souza, MS. Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications. Prog Brain Res. 2016;223:191214. doi: 10.1016/bs.pbr.2015.07.008.CrossRefGoogle ScholarPubMed
Malarcher, A. https://www.cdc.gov/mmwr/index.html. 2011. Date accessed March 11 2020.Google Scholar
Hughes, JR, Keely, J, Naud, S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2014;99(1):2938.CrossRefGoogle Scholar
Gilpin, EA, Pierce, JP, Farkas, AJ. Duration of smoking abstinence and success in quitting. J Natl Cancer Inst. 1997;89(8):572576.CrossRefGoogle ScholarPubMed
Pistillo, F, Clementi, F, Zoli, M, Gotti, C. Nicotinic glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol. 2015;124:127. doi: 10.1016/j.pneurobio.2014.10.002.CrossRefGoogle ScholarPubMed
Akkus, F, Ametamey, SM, Treyer, V, et al. Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A. 2013;110(2):737742. doi: 10.1073/pnas.1210984110.CrossRefGoogle ScholarPubMed
Akkus, F, Treyer, V, Johayem, A, et al. Association of long-term nicotine abstinence with normal metabotropic glutamate receptor-5 binding. Biol Psychiatry. 2016;79(6):474480. doi: 10.1016/j.biopsych.2015.02.027.CrossRefGoogle ScholarPubMed
Mihov, Y, Hasler, G. Negative allosteric modulators of metabotropic glutamate receptors subtype 5 in addiction: a therapeutic window. Int J Neuropsychopharmacol. 2016;19(7):111. doi: 10.1093/ijnp/pyw002.CrossRefGoogle ScholarPubMed
Willard, SS, Koochekpour, S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci. 2013;9(9):948959. doi: 10.7150/ijbs.6426.CrossRefGoogle ScholarPubMed
Terbeck, S, Akkus, F, Chesterman, LP, Hasler, G. The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction: combining preclinical evidence with human Positron Emission Tomography (PET) studies. Front Neurosci. 2015;9(86):110. doi: 10.3389/fnins.2015.00086.CrossRefGoogle ScholarPubMed
Li, X, Semenova, S, D'Souza, MS, Stoker, AK, Markou, A. Involvement of glutamatergic and GABAergic systems in nicotine dependence: implications for novel pharmacotherapies for smoking cessation. Neuropharmacology . 2014;76(Pt B):554565. doi: 10.1016/j.neuropharm.2013.05.042.CrossRefGoogle ScholarPubMed
Chiamulera, C, Marzo, CM, Balfour, DJK. Metabotropic glutamate receptor 5 as a potential target for smoking cessation. Psychopharmacology (Berl). 2017;234(9–10):13571370. doi: 10.1007/s00213-016-4487-3.CrossRefGoogle ScholarPubMed
D’Souza, MS, Markou, A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract. 2011;6(1):416.Google ScholarPubMed
Moeller, SJ, London, ED, Northoff, G. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: relationships to resting-state functional connectivity. Neurosci Biobehav Rev. 2016;61:3552. doi: 10.1016/j.neubiorev.2015.11.010.CrossRefGoogle ScholarPubMed
O’Neill, J, Tobias, MC, Hudkins, M, et al. Thalamic glutamate decreases with cigarette smoking. Psychopharmacology (Berl). 2014;231(13):27172724. doi: 10.1007/s00213-014-3441-5.CrossRefGoogle ScholarPubMed
Asevedo, E, Mendes, AC, Berk, M, Brietzke, E. Systematic review of N-acetylcysteine in the treatment of addictions. Rev Bras Psiquiatr. 2014;36(2):168175.CrossRefGoogle ScholarPubMed
McClure, EA, Gipson, CD, Malcolm, RJ, Kalivas, PW, Gray, KM. Potential role of N-acetylcysteine in the management of substance use disorders. CNS Drugs. 2014;28(2):95106. doi: 10.1007/s40263-014-0142-x.CrossRefGoogle ScholarPubMed
Bowers, MS, Jackson, A, Maldoon, PP, Damaj, MI. N-acetylcysteine decreased nicotine reward-like properties and withdrawal in mice. Psychopharmacology (Berl). 2016;233(6):9951003. doi: 10.1007/s00213-015-4179-4.CrossRefGoogle ScholarPubMed
Schmaal, L, Berk, L, Hulstijn, KP, Cousijn, J, Wiers, RW, van den Brink, W. Efficacy of N-acetylcysteine in the treatment of nicotine dependence: a double-blind placebo-controlled pilot study. Eur Addict Res. 2011;17(4):211216. doi: 10.1159/000327682.CrossRefGoogle ScholarPubMed
Deepmala, , Slattery, J, Kumar, N, et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev. 2015;55:294321. doi: 10.1016/j.neubiorev.2015.04.015.CrossRefGoogle ScholarPubMed
Stevenson, RA, Hoffman, JL, Maldonado-Devincci, AM, Faccidomo, S. Hodge, CW. MGluR5 activity is required for the induction of ethanol behavioural sensitization and associted changes in ERK MAP kinase phosphorylation in the nucleus accumbens shell and lateral habenula. Behav Brain Res. 2019;23:1927 . doi: 10.1016/j.bbr.2019.03.038.CrossRefGoogle Scholar
Jong, YJ, Sergin, I, Purgert, CA, O’Malley, KL. Location-dependent signaling of the group 1 metabotropic glutamate receptor mGlu5. Mol Pharmacol. 2014;86(6):774785. doi: 10.1124/mol.114.094763.CrossRefGoogle Scholar
Olmo, IG, Ferreira-Vieira, TH, Ribeiro, FM. Dissecting the signaling pathways involved in the crosstalk between metabotropic glutamate 5 and cannabinoid type 1 receptors. Mol Pharmacol. 2016;90(5):609619. doi: 10.1124/mol.116.104372.CrossRefGoogle ScholarPubMed
Stoker, AK, Olivier, B, Markou, A. Involvement of metabotropic glutamate receptor 5 in brain reward deficits associated with cocaine and nicotine withdrawal and somatic signs of nicotine withdrawal. Psychopharmacology (Berl). 2012;221(2):317327. doi: 10.1007/s00213-011-2578-8.CrossRefGoogle ScholarPubMed
Reid, MS, Fox, L, Ho, LB, Berger, SP. Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization. Synapse. 2000;35(2):129136. doi: 10.1002/(SICI)1098-2396(200002)35:2<129::AID-SYN5>3.0.CO;2-D.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Abdallah, CG, Hannestad, J, Mason, GF, et al. Metabotropic glutamate receptor 5 and glutamate involvement in major depressive disorder: a multimodal imaging study. Biol Psychiatry Cogn Neurosci Neuroimag. 2017;2(5):449456. doi: 10.1016/j.bpsc.2017.03.019.Google ScholarPubMed
Lee, AM. Messing, RO. Protein kinases and addiction. Ann N Y Acad Sci. 2011;1141:2257, doi: 10.1196/annals.1441.022.CrossRefGoogle Scholar
Yang, JH, Sohn, S, Kim, S, et al. Repeated nicotine exposure increases the intracellular interaction between ERK-mGluR5 in the nucleus accumbens more in adult than adolescent rats. Addict Biol. 2020;e12913:113 doi: 10.1111/adb.12913.Google Scholar
Paterson, NE, Semenova, S, Gasparini, F, Markou, A. The mGluR5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology (Berl). 2003;167(3):257264. doi: 10.1007/s00213-003-1432-z.CrossRefGoogle ScholarPubMed
Moutin, E, Raynaud, F, Roger, J, et al. Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. J Cell Biol. 2012;198(2):251263. doi: 10.1083/jcb.201110101.CrossRefGoogle ScholarPubMed
Andrzejewski, M, McKee, B, Baldwin, A, Burns, L, Hernandez, P. The clinical relevance of neuroplasticity in corticostriatal networks during operant learning. Neurosci Biobehav Rev. 2013;37(9):20712080. doi: 10.1016/j.neubiorev.2013.03.019.CrossRefGoogle ScholarPubMed
Tronci, V, Balfour, DJ. The effects of the mGluR5 receptor antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) on the stimulation of dopamine release evoked by nicotine in the rat brain. Behav Brain Res. 2011;219(2):354357. doi: 10.1016/j.bbr.2010.12.024.CrossRefGoogle ScholarPubMed
Tronci, V, Vronskaya, S, Montgomery, N, Mura, D, Balfour, DJ. The effects of the mGluR5 receptor antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) on behavioural responses to nicotine. Psychopharmacology (Berl) . 2010;211(1):3342. doi: 10.1007/s00213-010-1868-x.CrossRefGoogle ScholarPubMed
Barnes, S, Sheffler, D, Semenova, S, Cosford, N, Bespalov, A. Metabotropic glutamate receptor 5 as a target for the treatment of depression and smoking: robust preclinical data but inconclusive clinical efficacy. Biol Psychiatry. 2018;83(11):955962. doi: 10.1016/j.biopsych.2018.03.001.CrossRefGoogle ScholarPubMed
Palmatier, M, Liu, X, Donny, E, Caggiula, A, Sved, A. Metabotropic glutamate 5 receptor (mGluR5) antagonists decrease nicotine seeking, but do not affect the reinforcement enhancing effects of nicotine. Neuropsychopharmacology. 2007;33(9):21392147. doi: 10.1038/sj.npp.1301623.CrossRefGoogle Scholar
Rutten, K, Van Der Kam, E, De Vry, J, Bruckmann, W, Tzschentke, T. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates conditioned place preference induced by various addictive and non-addictive drugs in rats. Addict Biol. 2010;16(1):108115. doi: 10.1111/j.1369-1600.2010.00235.x.CrossRefGoogle Scholar
Ametamey, SM, Treyer, V, Streffer, J, et al. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med. 2007;48(2):247252.Google ScholarPubMed
Hulka, LM, Treyer, V, Scheidegger, M, et al. Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol Psychiatry. 2014;19(5):625632. doi: 10.1038/mp.2013.51.CrossRefGoogle Scholar
Akkus, F, Treyer, V, Ametamey, SM, Johayem, A, Buck, A, Hasler, G. Metabotropic glutamate receptor 5 neuroimaging in schizophrenia. Schizophr Res. 2017;183:95101. doi: 10.1016/j.schres.2016.11.008.CrossRefGoogle Scholar
Müller Herde, A, Mihov, Y, Kramer, SD, et al. Chronic nictotine exposure alters metabotropic glutamt receptor 5: longitudinal PET study and behavioural assessment in rats. Neurotox Res. 2019;36:808816, doi: 10.1007/s12640-019-00055-5.CrossRefGoogle Scholar