Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T11:00:10.850Z Has data issue: false hasContentIssue false

The Precuneus and Consciousness

Published online by Cambridge University Press:  07 November 2014

Abstract

This article reviews the rapidly growing literature on the functional anatomy and behavioral correlates of the precuneus, with special reference to imaging neuroscience studies using hamodynamic techniques. The precuneus, along with adjacent areas within the posteromedial parietal cortex, is among the most active cortical regions according to the “default mode” of brain function during the conscious resting state, whereas it selectively deactivates in a number of pathophysiological conditions (ie, sleep, vegetative state, drug-induced anesthesia), and neuropsychiatric disorders (ie, epilepsy, Alzheimer's disease, and schizophrenia) characterized by impaired consciousness. These findings, along with the widespread connectivity pattern, suggest that the precuneus may play a central role in the neural network correlates of consciousness. Specifically, its activity seems to correlate with self-reflection processes, possibly involving mental imagery and episodic/autobiographical memory retrieval.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Foville, AL. Traité complêt de l'anatomie, de la physiologie et de la pathologie du système nerveux cérébro-spinal. Paris, France: Fortin, Masson; 1844.Google Scholar
2.Critchley, M. The Parietal Lobes. London, UK: Edward Arnold; 1953.Google Scholar
3.Vogt, BA, Laureys, S. Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res. 2005;150:205217.CrossRefGoogle ScholarPubMed
4.Cavanna, AE, Trimble, MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(pt 3):564583.CrossRefGoogle ScholarPubMed
5.Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig, Germany: JA Barth; 1909.Google Scholar
6.Talairach, J, Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain [German]. Stuttgart, Germany: Thieme; 1988.Google Scholar
7.Leichnetz, GR. Connections of the medial posterior parietal cortex (area 7m) in the monkey. Anat Rec. 2001;263:215236.CrossRefGoogle ScholarPubMed
8.Zilles, K, Eickhoff, S, Palomero-Gallagher, N. The human parietal cortex: a novel approach to its architectonic mapping. Adv Neurol. 2003;93:121.Google ScholarPubMed
9.Van Hoesen, GW, Maddock, RJ, Vogt, BA. Connections of the monkey cingulate cortex. In: Vogt, BA, Gabriel, M, eds. Neurobiology of Cingulate Cortex and Limbic Thalamus. Boston, Mass: Birkhauser; 1993:249284.CrossRefGoogle Scholar
10.Frackowiak, RSJ, Friston, KJ, Frith, CD, Dolan, RJ, Mazziotta, JC, eds. Human Brain Function. San Diego, Calif: Academic Press; 1997.Google Scholar
11.Pandya, DN, Seltzer, B. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol. 1982;204:196210.CrossRefGoogle ScholarPubMed
12.Parvizi, J, Van Hoesen, GW, Buckwalter, J, Damasio, A. Neural connections of the posteromedial cortex in the macaque. Proc Natl Acad Sci U S A. 2006;103:15631568.CrossRefGoogle ScholarPubMed
13.Gur, RC, Mozley, LH, Mozley, PD,et al.Sex differences in regional cerebral glucose metabolism during a resting state. Science. 1995;267:528531.CrossRefGoogle ScholarPubMed
14.Binder, JR, Frost, JA, Hammeke, TA, Bellgowan, PSF, Rao, SM, Cox, RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999;11:8093.CrossRefGoogle Scholar
15.Raichle, ME, MacLeod, AM, Snyder, AZ, Powers, WJ, Gusnard, DA, Shulman, GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676682.CrossRefGoogle ScholarPubMed
16.Gusnard, DA, Raichle, ME, Raichle, ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685694.CrossRefGoogle ScholarPubMed
17.Mitchell, JP, Heatherton, TF, Macrae, CN. Distinct neural systems subserve person and object knowledge. Proc Natl Acad Sci U S A. 2003;99:1523815243.CrossRefGoogle Scholar
18.Gusnard, DA, Raichle, ME. Functional imaging, neurophysiology, and the resting state of the human brain. In: Gazzaniga, M, ed. The Cognitive Neurosciences. Cambridge, Mass: MIT Press; 2004:12671280.Google Scholar
19.Greicius, MD, Krasnow, B, Reiss, AL, Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100:253258.CrossRefGoogle Scholar
20.Morcom, AM, Fletcher, PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage. 2006 Oct 16; [Epub ahead of print].Google Scholar
21.Maquet, P, Degueldre, C, Delfiore, G, et al.Functional neuroanatomy of human slow wave sleep. J Neurosci. 1997;17:28072812.CrossRefGoogle ScholarPubMed
22.Maquet, P, Peters, J, Aerts, J, et al.Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature. 1996;383:163166.CrossRefGoogle ScholarPubMed
23.Braun, AR, Balkin, TJ, Wesenten, NJ, et al.Regional cerebral blood flow throughout the sleep-wake cycle: an (H20)-015 PET study. Brain. 1997; 120:11731197.CrossRefGoogle Scholar
24.Rainville, P, Hofbauer, RK, Paus, T, Duncan, GH, Bushnell, MC, Price, DD. Cerebral mechanisms of hypnotic induction and suggestion. J Cogn Neurosci. 1999;11:110125.CrossRefGoogle ScholarPubMed
25.Maquet, P, Faymonville, ME, Degueldre, C, et al.Functional neuroanatomy of hypnotic state. Biol Psychiatry. 1999;45:327333.CrossRefGoogle ScholarPubMed
26.Fiset, P, Paus, T, Daloze, T, et al.Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci. 1999;19:55065513.CrossRefGoogle ScholarPubMed
27.Alkire, MT, Pomfrett, MT, Haier, CJ, et al.Functional brain imaging during anesthesia in humans: effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology. 1999;90:701709.CrossRefGoogle ScholarPubMed
28.Laureys, S, Goldman, S, Phillips, C, et al.Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage. 1999;9:377382.CrossRefGoogle ScholarPubMed
29.Laureys, S, Owen, AM, Schiff, ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3:537546.CrossRefGoogle ScholarPubMed
30.Blumenfeld, H. Consciousness and epilepsy: why are patients with absence seizures absent? Prog Brain Res. 2005:150:271286.CrossRefGoogle ScholarPubMed
31.Monaco, F, Mula, M, Cavanna, AE. Consciousness, epilepsy and emotional qualia. Epilepsy Behav. 2005;7:150160.CrossRefGoogle ScholarPubMed
32.Gotman, J, Grova, C, Bagshaw, A, Kobayashi, E, Aghakhani, Y, Dubeau, F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A. 2006;102:1523615240.CrossRefGoogle Scholar
33.Hamandi, K, Salek-Haddadi, A, Laufs, H, et al.EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage. 2006;31:17001710.CrossRefGoogle ScholarPubMed
34.Laufs, H, Lengler, U, Hamandi, K, Kleinschmidt, A, Krakow, K. Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia. 2006;47:444448.CrossRefGoogle Scholar
35.Van Paesschen, W, Dupont, P, Van Driel, G, Van Billoen, H, Maes, A. SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain. 2003;126:11031111.CrossRefGoogle ScholarPubMed
36.Laufs, H, Hamandi, K, Salek-Haddadi, A, Kleinschmidt, A, Duncan, JS, Lemieux, L. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp. In press.Google Scholar
37.Lustig, C, Snyder, AZ, Bhakta, M, et al.Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A. 2003;100:1450414509.CrossRefGoogle ScholarPubMed
38.Greicius, MD, Srivastava, G, Reiss, AL, Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101:46374642.CrossRefGoogle ScholarPubMed
39.Van Horn, JD. The new perspectives in fMRI Research Award: exploring patterns of default-mode brain activity. J Cogn Neurosci. 2004;16:14791480.CrossRefGoogle ScholarPubMed
40.Buckner, RL, Snyder, AZ, Shannon, BJ, et al.Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Cogn Neurosci. 2005;25:77097717.CrossRefGoogle ScholarPubMed
41.Sass, LA, Parnas, J. Schizophrenia, consciousness, and the self. Schizophr Bull. 2003;29:427444.CrossRefGoogle ScholarPubMed
42.Harrison, BJ, Yücel, M, Pujol, J, Pantelis, C. Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res. 2007;91:8286.CrossRefGoogle ScholarPubMed
43.McKiernan, KA, Kaufman, JN, Kucera-Thompson, J, Binder, JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci. 2003;15:394408.CrossRefGoogle ScholarPubMed
44.Vogeley, K, Fink, GR. Neural correlates of the first-person-perspective. Trends Cogn Sci. 2003;7:3842.CrossRefGoogle ScholarPubMed
45.Trimble, M. Body image and the parietal lobes. CNS Spectr. 2007;12:540544.CrossRefGoogle ScholarPubMed
46.Trimble, MR, Cavanna, AE. The role of the precuneus in episodic memory. In: Dere, E, Easton, , Huston, JP, eds. Handbook of Behavioural Neuroscience: Episodic Memory Research. Elsevier Science. In press.Google Scholar
47.Fletcher, PC, Frith, CD, Baker, SC, Shallice, T, Frackowiak, RS, Dolan, RJ. The mind's eye—precuneus activation in memory-related imagery. Neuroimage. 1995;2:195200.CrossRefGoogle ScholarPubMed
48.Yonelinas, AP, Otten, LJ, Shaw, KN, Rugg, MD. Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci. 2005;25:30023008.CrossRefGoogle ScholarPubMed
49.Daselaar, SM, Fleck, MS, Dobbins, IG, Madden, DJ, Cabeza, R. Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex. 2006;16:17711782.CrossRefGoogle ScholarPubMed
50.Daselaar, SM, Rice, HJ, Greenberg, DL, Cabeza, R, Labar, KS, Rubin, DC. The spatiotemporal dynamics of autobiographical memory: neural correlates of recall, emotional intensity, and reliving. Cereb Cortex. 2007. 2007 Jun 4; [Epub ahead of print].Google ScholarPubMed
51.Kjaer, TW, Nowak, M, Lou, HC. Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. Neuroimage. 2002;17:10801086.CrossRefGoogle ScholarPubMed
52.Lou, HC, Luber, B, Crupain, M, et al.Parietal cortex and representation of the mental self. Proc Natl Acad Sci U S A. 2004;101:68276832.CrossRefGoogle ScholarPubMed
53.Lou, HC, Kjaer, TW, Friberg, L, Wildschiodtz, G, Holm, S, Nowak, M. A 150-H20 PET study of meditation and the resting state of normal consciousness. Hum Brain Mapp. 1999;7:98105.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
54.Kjaer, TW, Nowak, M, Kjaer, KW, Lou, AR, Lou, HC. Precuneus-prefrontal activity during awareness of visual verbal stimuli. Conscious Cogn. 2001:10:356365.CrossRefGoogle ScholarPubMed