Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T01:36:57.008Z Has data issue: false hasContentIssue false

Pituitary gland volume in at-risk mental state for psychosis: a longitudinal MRI analysis

Published online by Cambridge University Press:  11 March 2014

Anna Walter
Affiliation:
University of Basel, Department of Psychiatry, Basel, Switzerland
Erich Studerus
Affiliation:
University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection, Basel, Switzerland
Renata Smieskova
Affiliation:
University of Basel, Department of Psychiatry, Basel, Switzerland Medical Image Analysis Centre (MIAC), University Hospital Basel, Basel, Switzerland
Corinne Tamagni
Affiliation:
University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection, Basel, Switzerland
Charlotte Rapp
Affiliation:
University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection, Basel, Switzerland
Stefan J. Borgwardt
Affiliation:
University of Basel, Department of Psychiatry, Basel, Switzerland Medical Image Analysis Centre (MIAC), University Hospital Basel, Basel, Switzerland
Anita Riecher-Rössler*
Affiliation:
University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection, Basel, Switzerland
*
*Address for correspondence: Prof. Anita Riecher-Rössler, MD, University of Basel Psychiatric Clinics, Center for Gender Research and Early Recognition, Kornhausgasse 7, CH-4051 Basel, Switzerland. (Email: [email protected])

Abstract

Introduction

Pituitary enlargement has been reported in individuals with schizophrenic psychosis or an at-risk mental state for psychosis (ARMS). In a previous study, our group could show pituitary volume increase in first episode and ARMS patients with later transition to psychosis (ARMS-T). However, there are no longitudinal studies on this issue so far. We therefore examined longitudinally whether transition to psychosis would be accompanied by a further increase of pituitary volume in antipsychotic-naïve ARMS patients.

Methods

Magnetic resonance imaging (MRI) data were acquired from 23 antipsychotic-naïve individuals with an ARMS. Ten subjects developed psychosis (ARMS-T) and 13 did not (ARMS-NT). ARMS-T were re-scanned after the onset of psychosis, and ARMS-NT were re-scanned at the end of the study period.

Results

There was no significant difference of the pituitary volume between ARMS-T and ARMS-NT in our sample, and there were no significant pituitary volume changes over time.

Discussion

Longitudinally, we could not detect any further volumetric changes in the pituitary volume with transition to psychosis.

Conclusions

This, together with the result of our previous study, could indicate that the perceived level of stress in ARMS patients is constantly high from very early onward.

Type
Original Research
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We would like to thank all patients who participated in the study, as well as Claudine Pfister and Laura Egloff for their help in preparing and editing this manuscript.

References

1. Garner, B, Pariante, CM, Wood, SJ, etal. Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biol Psychiatry. 2005; 58(5): 417423.Google Scholar
2. Pariante, CM. Pituitary volume in psychosis: the first review of the evidence. J Psychopharmacol. 2008; 22(2 Suppl): 7681.CrossRefGoogle ScholarPubMed
3. Nordholm, D, Krogh, J, Mondelli, V, etal. Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls: a systematic review and meta-analysis. Psychoneuroendocrinology. 2013; 38(11): 23942404.CrossRefGoogle ScholarPubMed
4. Pariante, CM, Dazzan, P, Danese, A, etal. Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the AEsop first-onset psychosis study. Neuropsychopharmacology. 2005; 30(10): 19231931.Google Scholar
5. Büschlen, J, Berger, GE, Borgwardt, SJ, etal. Pituitary volume increase during emerging psychosis. Schizophr Res. 2011; 125(1): 4148.Google Scholar
6. Pariante, CM, Vassilopoulou, K, Velakoulis, D, etal. Pituitary volume in psychosis. Br J Psychiatry. 2004; 185: 510.Google Scholar
7. Markianos, M, Hatzimanolis, J, Lykouras, L. Neuroendocrine responsivities of the pituitary dopamine system in male schizophrenic patients during treatment with clozapine, olanzapine, risperidone, sulpiride, or haloperidol. Eur Arch Psychiatry Clin Neurosci. 2001; 251(3): 141146.CrossRefGoogle ScholarPubMed
8. Upadhyaya, AR, El-Sheikh, R, MacMaster, FP, Diwadkar, VA, Keshavan, MS. Pituitary volume in neuroleptic-naive schizophrenia: a structural MRI study. Schizophr Res. 2007; 90(1–3): 266273.Google Scholar
9. Sassi, RB, Nicoletti, M, Brambilla, P, etal. Decreased pituitary volume in patients with bipolar disorder. Biol Psychiatry. 2001; 50(4): 271280.CrossRefGoogle ScholarPubMed
10. MacMaster, FP, El-Sheikh, R, Upadhyaya, AR, etal. Effect of antipsychotics on pituitary gland volume in treatment-naive first-episode schizophrenia: a pilot study. Schizophr Res. 2007; 92(1–3): 207210.Google Scholar
11. Takahashi, T, Zhou, SY, Nakamura, K, etal. Longitudinal volume changes of the pituitary gland in patients with schizotypal disorder and first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(1): 177183.Google Scholar
12. Nicolo, JP, Berger, GE, Garner, BA, etal. The effect of atypical antipsychotics on pituitary gland volume in patients with first-episode psychosis: a longitudinal MRI study. Schizophr Res. 2010; 116(1): 4954.CrossRefGoogle ScholarPubMed
13. Gruner, P, Christian, C, Robinson, DG, etal. Pituitary volume in first-episode schizophrenia. Psychiatry Res. 2012; 203(1): 100102.CrossRefGoogle ScholarPubMed
14. Riecher-Rössler, A, Rybakowski, J, Pflüger, M, etal. Hyperprolactinemia in antipsychotic naïve patients with first episode psychosis—results from EUFEST. Psychol Med. 2013; 43(12): 25712582.CrossRefGoogle Scholar
15. Aston, J, Rechsteiner, E, Bull, N, etal. Hyperprolactinaemia in early psychosis—not only due to antipsychotics. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34(7): 13421344.Google Scholar
16. Aiello, G, Horowitz, M, Hepgul, N, Pariante, CM, Mondelli, V. Stress abnormalities in individuals at risk for psychosis: a review of studies in subjects with familial risk or with “at risk” mental state. Psychoneuroendocrinology. 2012; 37(10): 16001613.Google Scholar
17. Habets, P, Collip, D, Myin-Germeys, I, etal. Pituitary volume, stress reactivity and genetic risk for psychotic disorder. Psychol Med. 2012; 42(7): 15231533.CrossRefGoogle ScholarPubMed
18. Holtzman, CW, Shapiro, DI, Trotman, HD, Walker, EF. Stress and the prodromal phase of psychosis. Curr Pharm Des. 2012; 18(4): 527533.CrossRefGoogle ScholarPubMed
19. Riecher-Rössler, A, Gschwandtner, U, Aston, J, etal. The Basel early-detection-of-psychosis (FEPSY)-study—design and preliminary results. Acta Psychiatr Scand. 2007; 115(2): 114125.CrossRefGoogle ScholarPubMed
20. Gschwandtner, U, Pflueger, MO, Semenin, V, etal. EEG: a helpful tool in the prediction of psychosis. Eur Arch Psychiatry Clin Neurosci. 2009; 259(5): 257262.CrossRefGoogle Scholar
21. Lukoff, D, Liberman, RP, Nuechterlein, KH. Symptom monitoring in the rehabilitation of schizophrenic patients. Schizophr Bull. 1986; 12(4): 578602.Google Scholar
22. Riecher-Rössler, A, Aston, J, Ventura, J, etal. Das Basel Screening Instrument fur Psychosen (BSIP): Entwicklung, Aufbau, Reliabilität und Validität. Fortschr Neurol Psychiatr. 2008; 76(4): 207216.CrossRefGoogle Scholar
23. Woods, SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry. 2003; 64(6): 663667.CrossRefGoogle ScholarPubMed
24. Yung, AR, Phillips, LJ, McGorry, PD, etal. Prediction of psychosis: a step towards indicated prevention of schizophrenia. Br J Psychiatry Suppl. 1998; 172(33): 1420.CrossRefGoogle ScholarPubMed
25. Yung, AR, McGorry, PD, Francey, SM, etal. PACE: a specialised service for young people at risk of psychotic disorders. Med J Aust. 2007; 187(7 Suppl): S43S46.CrossRefGoogle Scholar
26. Andreasen, NC. The Scale for the Assessment of Negative Symptoms (SANS): conceptual and theoretical foundations. Br J Psychiatry Suppl. 1989; (7): 4958.Google Scholar
27. Buehlmann, E, Berger, GE, Aston, J, etal. Hippocampus abnormalities in at risk mental states for psychosis? A cross-sectional high resolution region of interest magnetic resonance imaging study. J Psychiatr Res. 2010; 44(7): 447453.CrossRefGoogle ScholarPubMed
28. Walter, A, Studerus, E, Smieskova, R, etal. Hippocampal volume in subjects at high risk of psychosis: a longitudinal MRI study. Schizophr Res. 2012; 142(1–3): 217222.Google Scholar
29. Kappos, L, Antel, J, Comi, G, etal. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006; 355(11): 11241140.Google Scholar
30. Borgwardt, SJ, McGuire, PK, Aston, J, etal. Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. Br J Psychiatry Suppl. 2007; 51: s69s75.CrossRefGoogle ScholarPubMed
31. Borgwardt, SJ, Riecher-Rössler, A, Dazzan, P, etal. Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry. 2007; 61(10): 11481156.CrossRefGoogle ScholarPubMed
32. Haller, S, Borgwardt, SJ, Schindler, C, etal. Can cortical thickness asymmetry analysis contribute to detection of at-risk mental state and first-episode psychosis? A pilot study. Radiology. 2009; 250(1): 212221.CrossRefGoogle ScholarPubMed
33. R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing [computer program]. Vienna, Austria: R Foundation for Statistical Computing; 2012 (available at: http://www.r-project.org/).Google Scholar
34. Baayen RH. languageR: Data sets and functions with “Analyzing Linguistic Data: A Practical Introduction to Statistics”, 2011 (available at: http://CRAN.R-project.org/package=languageR).Google Scholar
35. Takahashi, T, Nakamura, K, Nishiyama, S, etal. Increased pituitary volume in subjects at risk for psychosis and patients with first-episode schizophrenia. Psychiatry Clin Neurosci. 2013; 67(7): 540548.CrossRefGoogle ScholarPubMed
36. van Os, J, Kenis, G, Rutten, BP. The environment and schizophrenia. Nature. 2010; 468(7321): 203212.CrossRefGoogle ScholarPubMed
37. Phassouliotis, C, Garner, BA, Phillips, LJ, etal. Enhanced cortisol suppression following administration of low-dose dexamethasone in first-episode psychosis patients. Aust N Z J Psychiatry. 2013; 47(4): 363370.Google Scholar
38. Borges, S, Gayer-Anderson, C, Mondelli, V. A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology. 2013; 38(5): 603611.CrossRefGoogle ScholarPubMed
39. Phillips, LJ, McGorry, PD, Garner, B, etal. Stress, the hippocampus and the hypothalamic-pituitary-adrenal axis: implications for the development of psychotic disorders. Aust N Z J Psychiatry. 2006; 40(9): 725741.Google Scholar
40. Tognin, S, Rambaldelli, G, Perlini, C, etal. Enlarged hypothalamic volumes in schizophrenia. Psychiatry Res. 2012; 204(2–3): 7581.Google Scholar
41. Mittal, VA, Orr, JM, Pelletier, A, etal. Hypothalamic-pituitary-adrenal axis dysfunction in non-clinical psychosis. Psychiatry Res. 2013; 206(2–3): 315317.CrossRefGoogle ScholarPubMed
42. Romo-Nava, F, Hoogenboom, WS, Pelavin, PE, etal. Pituitary volume in schizophrenia spectrum disorders. Schizophr Res. 2013; 146(1–3): 301307.CrossRefGoogle ScholarPubMed
43. Belvederi Murri, M, Pariante, CM, Dazzan, P, etal. Hypothalamic-pituitary-adrenal axis and clinical symptoms in first-episode psychosis. Psychoneuroendocrinology. 2012; 37(5): 629644.CrossRefGoogle ScholarPubMed
44. Krishnan, KR, Doraiswamy, PM, Lurie, SN, etal. Pituitary size in depression. J Clin Endocrinol Metab. 1991; 72(2): 256259.CrossRefGoogle ScholarPubMed
45. Axelson, DA, Doraiswamy, PM, Boyko, OB, etal. In vivo assessment of pituitary volume with magnetic resonance imaging and systematic stereology: relationship to dexamethasone suppression test results in patients. Psychiatry Res. 1992; 44(1): 6370.CrossRefGoogle ScholarPubMed
46. Takahashi, T, Suzuki, M, Velakoulis, D, etal. Increased pituitary volume in schizophrenia spectrum disorders. Schizophr Res. 2009; 108(1–3): 114121.CrossRefGoogle ScholarPubMed
47. Klomp, A, Koolschijn, PC, Hulshoff Pol, HE, Kahn, RS, Van Haren, NE. Hypothalamus and pituitary volume in schizophrenia: a structural MRI study. Int J Neuropsychopharmacol. 2012; 15(2): 281288.CrossRefGoogle ScholarPubMed
48. Tournikioti, K, Tansella, M, Perlini, C, etal. Normal pituitary volumes in chronic schizophrenia. Psychiatry Res. 2007; 154(1): 4148.Google Scholar
49. Riecher-Rössler, A, Hafner, H. Schizophrenia and oestrogens—is there an association? Eur Arch Psychiatry Clin Neurosci. 1993; 242(6): 323328.Google Scholar
50. Riecher-Rössler, A, Häfner, H, Dütsch-Strobel, A, Stummbaum, M. Gonadal function and its influence on psychopathology. Arch Womens Ment Health. 1998; 1(1): 1526.CrossRefGoogle Scholar
51. Riecher-Rössler, A. Oestrogen effects in schizophrenia and their potential therapeutic implications—review. Arch Womens Ment Health. 2002; 5(3): 111118.Google Scholar
52. Tsigkaropoulou, E, Peppa, M, Zompola, C, etal. Hypogonadism due to hyperprolactinemia and subsequent first episode of psychosis. Gend Med. 2012; 9(1): 5660.Google Scholar
53. Lee, BH, Kim, YK. The relationship between prolactin response and clinical efficacy of risperidone in acute psychotic inpatients. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30(4): 658662.CrossRefGoogle ScholarPubMed
54. Garcia-Rizo, C, Fernandez-Egea, E, Oliveira, C, etal. Prolactin concentrations in newly diagnosed, antipsychotic-naive patients with nonaffective psychosis. Schizophr Res. 2012; 134(1): 1619.CrossRefGoogle ScholarPubMed
55. Takahashi, T, Suzuki, M, Tanino, R, etal. Volume reduction of the left planum temporale gray matter associated with long duration of untreated psychosis in schizophrenia: a preliminary report. Psychiatry Res. 2007; 154(3): 209219.Google Scholar
56. Mondelli, V, Dazzan, P, Gabilondo, A, etal. Pituitary volume in unaffected relatives of patients with schizophrenia and bipolar disorder. Psychoneuroendocrinology. 2008; 33(7): 10041012.CrossRefGoogle ScholarPubMed
57. Elster, AD. Modern imaging of the pituitary. Radiology. 1993; 187(1): 114.Google Scholar
58. Suzuki, M, Takashima, T, Kadoya, M, etal. Height of normal pituitary gland on MR imaging: age and sex differentiation. J Comput Assist Tomogr. 1990; 14(1): 3639.CrossRefGoogle ScholarPubMed
59. Tsunoda, A, Okuda, O, Sato, K. MR height of the pituitary gland as a function of age and sex: especially physiological hypertrophy in adolescence and in climacterium. AJNR Am J Neuroradiol. 1997; 18(3): 551554.Google ScholarPubMed
60. MacMaster, FP, Keshavan, M, Mirza, Y, etal. Development and sexual dimorphism of the pituitary gland. Life Sci. 2007; 80(10): 940944.Google Scholar
61. Abech, DD, Moratelli, HB, Leite, SC, Oliveira, MC. Effects of estrogen replacement therapy on pituitary size, prolactin and thyroid-stimulating hormone concentrations in menopausal women. Gynecol Endocrinol. 2005; 21(4): 223226.CrossRefGoogle ScholarPubMed
62. Grams, AE, Gempt, J, Stahl, A, Forschler, A. Female pituitary size in relation to age and hormonal factors. Neuroendocrinology. 2010; 92(2): 128132.Google Scholar
63. Terano, T, Seya, A, Tamura, Y, Yoshida, S, Hirayama, T. Characteristics of the pituitary gland in elderly subjects from magnetic resonance images: relationship to pituitary hormone secretion. Clin Endocrinol (Oxf). 1996; 45(3): 273279.Google Scholar
64. Habets, P, Collip, D, Myin-Germeys, I, etal. Pituitary volume, stress reactivity and genetic risk for psychotic disorder. Psychol Med. 2012; 42(7): 15231533.Google Scholar
65. Zipursky, AR, Whittle, S, Yucel, M, etal. Pituitary volume prospectively predicts internalizing symptoms in adolescence. J Child Psychol Psychiatry. 2011; 52(3): 315323.Google Scholar
66. Ellis, PD. The Essential Guide to Effect Sizes. Cambridge, UK: Cambridge University Press; 2010.Google Scholar