Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T09:26:54.591Z Has data issue: false hasContentIssue false

Pharmacological, experimental therapeutic, and transcranial magnetic stimulation treatments for compulsivity and impulsivity

Published online by Cambridge University Press:  01 November 2013

Stefano Pallanti*
Affiliation:
University of Florence, School of Medicine, Florence, Italy Ichan School of Medicine at Mount Sinai, New York, New York, USA Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
Eric Hollander
Affiliation:
Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
*
*Address for correspondence: Stefano Pallanti, University of Florence, School of Medicine, 50134, Florence (I); Ichan School of Medicine at Mount Sinai, NY 10029 (US); Albert Einstein College of Medicine and Montefiore Medical Center, NY 10461 (US). (Email: [email protected])

Abstract

Obsessive-compulsive disorder (OCD) has been recently drawn apart from anxiety disorder by the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) and clustered together with related disorders (eg, hoarding, hair pulling disorder, skin picking), which with it seems to share clinical and neurophysiological similarities. Recent literature has mainly explored brain circuitries (eg, orbitofrontal cortex, striatum), molecular pathways, and genes (eg, Hoxb8, Slitrk5, Sapap3) that represent the new target of the treatments; they also lead the development of new probes and compounds. In the therapeutic field, monotherapy with cognitive behavioral therapy (CBT) or selective serotonin reuptake inhibitors (SSRIs) is recommendable, but combination or augmentation with a dopaminergic or glutamatergic agent is often adopted. A promising therapy for OCD is represented by repetitive transcranial magnetic stimulation (rTMS), which is suitable to treat compulsivity and impulsivity depending on the protocol of stimulation and the brain circuitries targeted.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors thank Anna Marras, PhD, for her collaboration in editing this paper.

References

1. Kupfer, DJ, First, MB, Regier, DA. A Research Agenda for DSM-V. Arlington, VA: American Psychiatric Publishing; 2008.Google Scholar
2. Mataix-Cols, D, Boman, M, Monzani, B, etal. Population-based, multigenerational family clustering study of obsessive-compulsive disorder. JAMA Psychiatry. 2013; 70(7): 709717.Google Scholar
3. van Grootheest, DS, van den Berg, SM, Cath, DC, Willemsen, G, Boomsma, DI. Marital resemblance for obsessive-compulsive, anxious and depressive symptoms in a population-based sample. Psychol Med. 2008; 38(12): 17311740.CrossRefGoogle Scholar
4. Stewart, SE, Yu, D, Scharf, JM, etal. D. Genome-wide association study of obsessive-compulsive disorder. Mol Psychiatry. 2012; 18(7): 788798.Google Scholar
5. Stewart, SE, Mayerfeld, C, Arnold, PD. Meta-analysis of association between obsessive-compulsive disorder and the 3′ region of neuronal glutamate transporter gene SLC1A1. Am J Med Genet B Neuropsychiatr Genet. 2013; 162(4): 367379.CrossRefGoogle Scholar
6. Abramowitz, JS, Deacon, B, Olatunji, B, etal. Assessment of obsessive-compulsive symptom dimensions: development and evaluation of the Dimensional Obsessive-Compulsive Scale. Psychol Assess. 2010; 22: 180198.CrossRefGoogle ScholarPubMed
7. Capecchi, MR. Hox genes and mammalian development. Cold Spring Harb Symp Quant Biol. 1997; 62: 273281.Google ScholarPubMed
8. Greer, JM, Capecchi, MR. Hoxb8 is required for normal grooming behavior in the mouse. Neuron. 2002; 33: 2334.Google Scholar
9. Chen, SK, Tvrdik, P, Peden, E, etal. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell. 2010; 141(5): 775785.Google Scholar
10. Antony, JM. Grooming and growing with microglia. Sci Signal. 2010; 3(147): jc8.Google Scholar
11. Wan, Y, Feng, G, Calakos, N. Sapap3 deletion causes mGluR5-dependent silencing of AMPAR synapses. J Neurosci. 2011; 31(46): 1668516691.CrossRefGoogle ScholarPubMed
12. Welch, JM, Lu, J, Rodriguiz, RM, etal. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007; 448: 894900.CrossRefGoogle ScholarPubMed
13. Wan, Y, Ade, KK, Caffall, Z, etal. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol Psychiatry. In press. DOI: 10.1016/j.biopsych.2013.01.008.Google Scholar
14. Shmelkov, SV, Hormigo, A, Jing, D, etal. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med. 2010; 16(5): 598602.Google Scholar
15. Campbell, KM, de Lecea, L, Severynse, DM, etal. OCD-like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci. 1999; 19: 50445053.Google Scholar
16. Nordstrom, EJ, Burton, FH. A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry. Mol Psychiatry. 2002; 7: 617625, 524.Google Scholar
17. McGrath, MJ, Campbell, KM, Parks, CR, Burton, FH. Glutamatergic drugs exacerbate symptomatic behavior in a transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder. Brain Res. 2000; 877: 2330.CrossRefGoogle Scholar
18. Taj M J, RJ, Viswanath, B, Purushottam, M, etal. DRD4 gene and obsessive compulsive disorder: do symptom dimensions have specific genetic correlates? Prog Neuropsychopharmacol Biol Psychiatry. 2013; 41: 1823.CrossRefGoogle ScholarPubMed
19. Cannistraro, PA, Rauch, SL. Neural circuitry of anxiety: evidence from structural and functional neuroimaging studies. Psychopharmacol Bull. 2003; 37: 825.Google Scholar
20. Mataix-Cols, D, Cullen, S, Lange, K, etal. Neural correlates of anxiety associated with obsessive-compulsive symptom dimensions in normal volunteers. Biol Psychiatry. 2003; 53: 482493.Google Scholar
21. Van den Heuvel, OA, Veltman, DJ, Groenewegen, HJ, etal. Amygdala activity in obsessive-compulsive disorder with contamination fear: a study with oxygen-15 water positron emission tomography. Psychiatry Res. 2004; 132: 225237.CrossRefGoogle Scholar
22. Simon, D, Kaufmann, C, Musch, K, etal. Fronto-striato-limbic hyperactivation in obsessive-compulsive disorder during individually tailored symptoms provocation. Psychophysiology. 2010; 47: 728738.Google Scholar
23. LeDoux, JE. Synaptic Self: How Our Brains Become Who We Are. New York: Viking Penguin; 2002.Google Scholar
24. Davis, M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992; 15(1): 353375.Google Scholar
25. Sookman, D, Pinard, G. Overestimation of threat and intolerance of uncertainty in obsessive compulsive disorder. In: Frost RO, Steketee G, eds. Cognitive Approaches to Obsessions and Compulsions: Theory, Assessment and Treatment. Oxford, UK: Elsevier; 2002: 6389.Google Scholar
26. Stein, DJ. Advances in understanding the anxiety disorders: the cognitive-affective neuroscience of “false alarms”. Ann Clin Psychiatry 2006; 18: 173182.Google Scholar
27. Saxena, S, Brody, AL, Schwartz, JM, etal. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry. 1998; 173(35): 2637.Google Scholar
28. Menzies, L, Chamberlain, SR, Laird, AR, etal. Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008; 32(3): 525549.Google Scholar
29. Depue, R, Collins, P. Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behav Brain Sci. 1999; 22(3): 491517.Google Scholar
30. Harrison, BJ, Soriano-Mas, C, Pujol, J, etal. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry. 2009; 66(11): 11891200.Google Scholar
31. Haber, SN, Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010; 35(1): 426.Google Scholar
32. Szechtman, H, Woody, E. Obsessive–compulsive disorder as a disturbance of security motivation. Psychol Rev. 2004; 111(1): 111127.Google Scholar
33. Endrass, T, Kloft, L, Kaufmann, C, etal. Approach and avoidance learning in obsessive–compulsive disorder. Depress Anxiety. 2011; 28(2): 166172.Google Scholar
34. Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002; 15(7–8): 435455.CrossRefGoogle ScholarPubMed
35. Sporns, O. Brain networks and embodiment. In: Mesquita B, Feldman B, eds. Mind in Context. New York: Guilford Press; 2010: 4264.Google Scholar
36. Banks, SJ, Eddy, KT, Angstadt, M, etal. Amygdala-frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci. 2007; 2(4): 303312.Google Scholar
37. Kim, MJ, Whalen, PJ. The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. J Neurosci. 2009; 29(37): 1161411618.CrossRefGoogle ScholarPubMed
38. Phillips, ML, Drevets, WC, Rauch, SL, etal. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003; 54(5): 515528.Google Scholar
39. Brody, AL, Saxena, S, Schwartz, JM, etal. FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res. 1998; 84(1): 16.Google Scholar
40. Saxena, S, Rauch, SL. Functional neuroimaging and the neuroanatomy of obsessive–compulsive disorder. Psychiatr Clin North Am. 2000; 23(3): 563586.Google Scholar
41. Menzies, L, Williams, GB, Chamberlain, SR, etal. White matter abnormalities in patients with obsessive–compulsive disorder and their first-degree relatives. Am J Psychiatry. 2008; 165(10): 13081315.CrossRefGoogle ScholarPubMed
42. Del Casale, A, Kotzalidis, GD, Rapinesi, C, etal. Functional neuroimaging in obsessive–compulsive disorder. Neuropsychobiology. 2011; 64(2): 6185.Google Scholar
43. Milad, MR, Rauch, SL. Obsessive–compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012; 16(1): 4351.Google Scholar
44. Aouizerate, B, Guehl, D, Cuny, E, etal. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol. 2004; 72(3): 195221.CrossRefGoogle ScholarPubMed
45. Maltby, N, Tolin, DF, Worhunsky, P, etal. Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: an event-related fMRI study. Neuroimage. 2005; 24(2): 495503.Google Scholar
46. Fitzgerald, KD, Welsh, RC, Gehring, WJ, etal. Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol Psychiatry. 2005; 57(3): 287294.CrossRefGoogle ScholarPubMed
47. Kringelbach, ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005; 6(9): 691702.Google Scholar
48. Remijnse, PL, Nielen, MM, van Balkom, AJ, etal. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry. 2006; 63(11): 12251236.Google Scholar
49. Chamberlain, SR, Menzies, L, Hampshire, A, etal. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science. 2008; 321(5887): 421422.Google Scholar
50. Figee, M, Vink, M, de Geus, F, etal. Dysfunctional reward circuitry in obsessive-compulsive disorder. Biol Psychiatry. 2011; 69(9): 867874.Google Scholar
51. Rauch, SL, Dougherty, DD, Cosgrove, GR, etal. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for obsessive compulsive disorder. Biol Psychiatry. 2001; 50(9): 659667.Google Scholar
52. Hendler, T, Goshen, E, Tzila Zwas, S, etal. Brain reactivity to specific symptom provocation indicates prospective therapeutic outcome in OCD. Psychiatry Research: Neuroimaging. 2003; 124(2): 87103.CrossRefGoogle ScholarPubMed
53. Insel, TR. Toward a neuroanatomy of obsessive-compulsive disorder. Arch Gen Psychiatry 1992; 49(9): 739.Google Scholar
54. Shanahan, NA, Velez, LP, Masten, VL. Essential Role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biol Psychiatry. 2011; 70(11): 10391048.Google Scholar
55. Melloni, M, Urbistondo, C, Sedeño, L, etal. The extended fronto-striatal model of obsessive compulsive disorder: convergence from event-related potentials, neuropsychology and neuroimaging. Front Hum Neurosci. 2012; 6: 259.Google Scholar
56. Fineberg, NA, Pallanti, S, Reghunandanan, S, Baldwin, DS, Leonard, BE (eds). Anxiety Disorders. Mod Trends Pharmacopsychiatry. Basel, Karger, 2003: 29: 164177.Google Scholar
57. Pallanti, S, Hollander, E, Bienstock, C, etal. Treatment non-response in OCD: methodological issues and operational definitions. Int J Neuropsychopharmacol. 2002; 5(2): 181191.Google Scholar
58. Pallanti, S, Quercioli, L, Koran, LM. Citalopram intravenous infusion in resistant obsessive-compulsive disorder: an open trial. J Clin Psychiatry. 2002; 63(9): 796.Google Scholar
59. Pallanti, S, Grassi, G. Citalopram pulse loading for severe treatment-resistant OCD: a case series of acute response, one year follow-up and tolerability. J Depress Anxiety. In press. DOI: 10.4172/2167-1044.S10-002.Google Scholar
60. Koran, LM, Aboujaoude, E, Ward, H, etal. Pulse-loaded intravenous clomipramine in treatment-resistant obsessive-compulsive disorder. J Clin Psychopharmacol. 2003; 26(1): 7983.Google Scholar
61. Ross, S, Fallon, BA, Petkova, E, Feinstein, S, Liebowitz, MR. Long-term follow-up study of patients with refractory obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci. 2008; 20(4): 450457.CrossRefGoogle ScholarPubMed
62. Pallanti, S, Bernardi, S, Antonini, S, Singh, N, Hollander, E. Ondasetron augmentation in treatment-resistant obsessive-compulsive disorder. CNS Drugs. 2009; 23(12): 10471055.Google Scholar
63. Askari, N, Moin, M, Sanati, M, etal. Granisetron adjunct to fluvoxamine for moderate to severe obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. CNS Drugs. 2012; 26(10): 883892.Google Scholar
64. Hollander, E, Pallanti, S. Current and Experimental Therapeutics of Obsessive Compulsive Disorders, pp 1647–1664, Neuro psychopharmacology: The Fifth Generation of Progress, An Official Publication of the American College of Neuropsychopharmacology, Edited by KL Davis, D. Charney, JT Coyle and C. Nemeroff, Lippincott/Williams and Wilkins, 2002.Google Scholar
65. Kaplan, A, Hollander, E. A review of pharmacologic treatments for obsessive-compulsive disorder. Psychiatr Serv. 2003; 54(8): 11111118.Google Scholar
66. Koran, LM, Aboujaoude, E, Gamel, NN. Double-blind study of dextroamphetamine versus caffeine augmentation for treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2009; 70(11): 15301535.CrossRefGoogle ScholarPubMed
67. Mowla, A, Khajeian, AM, Sahraian, A, Chohedri, AH, Kashkoli, F. Topiramate augmentation in resistant OCD: a double-blind placebo-controlled clinical trial. CNS Spectr. 2010; 15(11): 613617.Google Scholar
68. Grant, P, Lougee, L, Hirschtritt, M, Swedo, SE. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2007; 17(6): 761767.Google Scholar
69. Berlin, HA, Koran, LM, Jenike, MA, etal. Double-blind, placebo-controlled trial of topiramate augmentation in treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2011; 72(5): 716721.Google Scholar
70 Aboujaoude, E, Barry, JJ, Gamel, N. Memantine augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. J Clin Psychopharmacol. 2009; 29(1): 5155.Google Scholar
71. Abudy, A, Juven-Wetzler, A, Zohar, J. Pharmacological management of treatment-resistant obsessive-compulsive disorder. CNS Drugs. 2011; 25(7): 585596.Google Scholar
72. Feusner, JD, Kerwin, L, Saxena, S & Bystritsky, A. Differential efficacy of memantine for obsessive-compulsive disorder vs. generalized anxiety disorder: an open-label trial. Psychopharmacology bulletin. 2009; 42(1): 81.Google Scholar
73. Rodriguez, CI, Kegeles, LS, Levinson, A, etal. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology. In press. DOI: 10.1038/npp.2013.Google Scholar
74. Farrell, LJ, Waters, AM, Boschen, MJ, etal. Difficult-to-treat pediatric obsessive-compulsive disorder: feasibility and preliminary results of a randomized pilot trial of d-cycloserine augmented behavior therapy. Depress Anxiety. 2013; 30(8): 723731.Google Scholar
75. Pallanti, S, Hollander, E, Goodman, WK. A qualitative analysis of nonresponse: management of treatment-refractory obsessive-compulsive disorder. J Clin Psychiatry. 2004; 65(14): 610.Google Scholar
76. Saxena, S. Pharmacotherapy of compulsive hoarding. J Clin Psychol. 2011; 67(5): 477484.Google Scholar
77. Ecker, W, Kupfer, J, Gönner, S. Incompleteness as a link between obsessive-compulsive personality traits and specific symptom dimensions of obsessive-compulsive disorder. Clin Psychol Psychother. In press. DOI: 10.1002/cpp.1842.Google Scholar
78. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed., text rev. Arlington, VA: American Psychiatric Association; 2000.Google Scholar
79. Grant, JE, Odlaug, BL, Potenza, MN. Addicted to hair pulling? How an alternate model of trichotillomania may improve treatment outcome. Harv Rev Psychiatry. 2007; 15(2): 8085.Google Scholar
80. Lange, LA, Kampov-Polevoy, AB, Garbutt, JC. Sweet liking and high novelty seeking: independent phenotypes associated with alcohol-related problems. Alcohol Alcohol. 2010; 45(5): 431436.Google Scholar
81. Schlosser, S, Black, DW, Blum, N, Goldstein, RB. The demography, phenomenology and family history of 22 persons with compulsive hair pulling. Ann Clin Psychiatry. 1994; 6(3): 147152.Google Scholar
82. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Arlington, VA: American Psychiatric Association.Google Scholar
83. Lochner, C, Hemmings, SM, Kinnear, CJ, etal. Cluster analysis of obsessive-compulsive symptomatology: identifying obsessive-compulsive disorder subtypes. Isr J Psychiatry Relat Sci. 2008; 45(3): 164176.Google Scholar
84. Blum, K, Braverman, ER, Holder, JM, etal. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs. 2000; 32(Suppl: i–iv): 1112.Google Scholar
85. Laine, TP, Ahonen, A, Rasanen, P, etal. The A1 allele of the D2 dopamine receptor gene is associated with high dopamine transporter density in detoxified alcoholics. Alcohol Alcohol. 2001; 36(3): 262265.Google Scholar
86. Laine, TP, Ahonen, A, Rasanen, P, etal. Dopamine transporter density and novelty seeking among alcoholics. J Addict Dis. 2001; 20(4): 9196.Google Scholar
87. Retz, W, Rosler, M, Supprian, T, etal. Dopamine D3 receptor gene polymorphism and violent behavior: relation to impulsiveness and ADHD-related psychopathology. J Neural Transm. 2003; 110(5): 561572.Google Scholar
88. Ray, LA, Bryan, A, Mackillop, J, etal. The dopamine D Receptor (DRD4) gene exon III polymorphism, problematic alcohol use and novelty seeking: direct and mediated genetic effects. Addict Biol. 2009; 14(2): 238244.Google Scholar
89. Demetrovics, Z, Varga, G, Szekely, A, etal. Association between novelty seeking of opiate-dependent patients and the catechol-O-methyl transferase Val(158)Met polymorphism. Compr Psychiatry. 2010; 51(5): 510515.Google Scholar
90. Loos, M, Pattij, T, Janssen, MC, etal. Dopaminereceptor D1/D5 gene expression in the medial prefrontal cortex predicts impulsive choice in rats. Cereb Cortex. 2010; 20(5): 10641070.Google Scholar
91. O'Sullivan, RL, Philips, KA, Keuthen, NJ. Near fatal skin picking from delusional body dysmorphic disorder responsive to fluvoxamine. Psychosomatics. 1999; 40(1): 7981.Google Scholar
92. Bloch, MH, Landeros-Weisenberger, A, Dombrowski, P, etal. Systematic review: pharmacological and behavioral treatment for trichotillomania. Biol Psychiatry. 2007; 62(8): 839846.Google Scholar
93. Snorrason, I, Belleau, EL, Woods, DW. How related are hair pulling disorder (trichotillomania) and skin picking disorder? A review of evidence for comorbidity, similarities and shared etiology. Clin Psychol Rev. 2012; 32(7): 618629.CrossRefGoogle ScholarPubMed
94. Pallanti, S, Grassi, G, Sarrecchia, ED, Cantisani, A, Pellegrini, M. Obsessive-compulsive disorder comorbidity: clinical assessment and therapeutic implications. Front Psychiatry. 2011; 2: 70.Google Scholar
95. Timpano, KR, Rubenstein, LM, Murphy, DL. Phenomenological features and clinical impact of affective disorders in OCD: a focus on the bipolar disorder and OCD connection. Depress Anxiety. 2012; 29(3): 226233.Google Scholar
96. Centorrino, F, Hennen, J, Mallya, G, etal. Clinical outcome in patients with bipolar I disorder, obsessive compulsive disorder or both. Hum Psychopharmacol. 2006; 21(3): 189193.Google Scholar
97. Hollander, E, Buchsbaum, MS, Haznedar, MM, etal. FDG-PET study in pathological gamblers. 1. Lithium increases orbitofrontal, dorsolateral and cingulate metabolism. Neuropsychobiology. 2008; 58(1): 3747.Google Scholar
98. Dorrego, MF, Canevaro, L, Kuzis, G, Sabe, L, Starkstein, SE. A randomized, double-blind, crossover study of methylphenidate and lithium in adults with attention-deficit/hyperactivity disorder preliminary findings. J Neuropsychiatry Clin Neurosci. 2002; 14(3): 289295.Google Scholar
99. Koran, LM, Aboujaoude, E, Bullock, KD, etal. Double-blind treatment with oral morphine in treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2005; 66(3): 353359.CrossRefGoogle ScholarPubMed
100. Amiaz, R, Fostick, L, Gershon, A, Zohar, J. Naltrexone augmentation in OCD: a double-blind placebo-controlled cross-over study. Eur Neuropsychopharmacol. 2008; 18(6): 455461.CrossRefGoogle ScholarPubMed
101. Jaafari, N, Rachid, F, Rotge, JY, etal. Safety and efficacy of repetitive transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder: a review. World J Biol Psychiatry. 2012; 13(3): 164177.Google Scholar
102. Greenberg, BD, George, MS, Martin, JD, etal. Effect of prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a preliminary study. Am J Psychiatry. 1997; 154(6): 867869.Google Scholar
103. Sachdev, PS, McBride, R, Loo, CK, etal. Right versus left prefrontal transcranial magnetic stimulation for obsessive-compulsive disorder: a preliminary investigation. J Clin Psychiatry. 2001; 62(12): 981984.Google Scholar
104. Alonso, P, Pujol, J, Cardoner, N, etal. Right prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a double-blind, placebo-controlled study. Am J Psychiatry. 2001; 158(7): 11431145.Google Scholar
105. Kang, JI, Kim, CH, Namkoong, K, etal. A randomized controlled study of sequentially applied repetitive transcranial magnetic stimulation in obsessive-compulsive disorder. J Clin Psychiatry. 2009; 70(12): 16451651.Google Scholar
106. Sarkhel, S, Sinha, VK, Praharaj, SK. Adjunctive high-frequency right prefrontal repetitive transcranial magnetic stimulation (rTMS) was not effective in obsessive-compulsive disorder but improved secondary depression. J Anxiety Disord. 2010; 24(5): 535539.Google Scholar
107. Prasko, J, Pasková, B, Záleský, R, etal. The effect of repetitive transcranial magnetic stimulation (rTMS) on symptoms in obsessive compulsive disorder: a randomized, double blind, sham controlled study. Neuro Endocrinol Lett. 2006; 27(3): 327332.Google Scholar
108. Sachdev, PS, Loo, CK, Mitchell, PB, etal. Repetitive transcranial magnetic stimulation for the treatment of obsessive compulsive disorder: a double-blind controlled investigation. Psychol Med. 2007; 37(11): 16451649.Google Scholar
109. Mantovani, A, Lisanby, SH, Pieraccini, F, etal. Repetitive transcranial magnetic stimulation (rTMS) in the treatment of obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Int J Neuropsychopharmacol. 2006; 9(1): 95100.Google Scholar
110. Mantovani, A, Leckman, JF, Grantz, H, etal. Repetitive transcranial stimulation of the supplementary motor area in the treatment of Tourette syndrome: report of two cases. Clin Neurophysiol. 2007; 118(10): 23142315.Google Scholar
111. Mantovani, A, Simpson, HB, Fallon, BA, etal. Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive-compulsive disorder. Int J Neuropsychopharmacol. 2010; 13(2): 217227.Google Scholar
112. Mantovani, A, Westin, G, Hirsch, J. Functional magnetic resonance imaging guided transcranial magnetic stimulation in obsessive-compulsive disorder. Biol Psychiatry. 2010; 67(7): e39e40.Google Scholar
113. Alptekin, K, Degermenci, B, Kivircik, B, etal. Tc-99 m HMPAO brain perfusion SPECT in drug-free obsessive-compulsive patients without depression. Psychiatry Res. 2001; 107(1): 5156.Google Scholar
114. Baxter, LR, Schwartz, JM, Mazziotta, JC, etal. Cerebral glucose metabolic rates in non-depressed patients with obsessive-compulsive disorder. Am J Psychiatry. 1988; 145(12): 15601563.Google Scholar
115. Swedo, SE, Schapiro, MB, Grady, CL, etal. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry. 1989; 46(6): 518523.Google Scholar
116. Ruffini, C, Locatelli, M, Lucca, A, etal. Augmentation effect of repetitive transcranial magnetic stimulation over the orbitofrontal cortex in drug-resistant obsessive-compulsive disorder patients: a controlled investigation. Prim Care Companion J Clin Psychiatry. 2009; 11(5): 226230.Google Scholar