Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T22:53:42.476Z Has data issue: false hasContentIssue false

Neuropsychopharmacology: Changing the Face of Psychotropic Drug Discovery

Published online by Cambridge University Press:  07 November 2014

Abstract

This review speculates on the changes currently taking place in psychopharmacology that will alter the course of psychotropic drug discovery and application in the coming millennium. The importance of endocoids as causative agents in central nervous system diseases; the role of neuropeptides and “trace” amine transmitters; the impact of imaging methods in elucidating the mechanism of action of psychotropic drugs; gene therapy; and the new role of psychoneuroimmunology in drug discovery are predicted to have a major impact in both the research and development of new psychotropic drugs in the twenty-first century.

Type
Feature Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Leonard, BE. In search of black bile. Ir J Psychol Med. 1996:13:7982.CrossRefGoogle Scholar
2.Dale, HH. Pharmacology and nerve endings. Proc R Soc Med Ther Sect. 1935:28:319332.Google ScholarPubMed
3.Hökfelt, T. Neuropeptides in perspective: the last 10 years. Neuron. 1991:7:867879.CrossRefGoogle Scholar
4.Graybiel, AM. Neurotransmitters and neuromodulators in basal ganglia. Trends Neurosci. 1990:13:244254.CrossRefGoogle ScholarPubMed
5.Hökfelt, T. Co-existence of peptides with classical transmitters. Experientia. 1987;43:768780.CrossRefGoogle Scholar
6.Mastropaolo, J, Nadi, NS, Ostrowkski, NL, Crawley, JN. Galanin antagonizes acetylcholine on a memory task in basal forebrain-lesioned rats. Proc Natl head Sci USA. 1988:85:98419845.CrossRefGoogle ScholarPubMed
7.Magistretti, PJ, Schorderet, M. Norepinephrine and histamine potentiate the increases in cAMP elicited by VIP in mouse cerebral cortical slices: mediation by alpha-1-adrenergic on H-histaminergic receptor. J Neurosci. 1985:5:362369.CrossRefGoogle Scholar
8.Panula, P, Airaksinen, MS, Pirvola, U, Kotilainen E. A histamine-containing neuronal system in human brain. Neuroscience. 1990:34:127132.CrossRefGoogle ScholarPubMed
9.Onodera, K, Yamatodani, A, Watanabe, T, Wada, H. Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioural disorders. Prog Neurobiol. 1994:42:685702.CrossRefGoogle Scholar
10.Fernandez-Novoa, F, Cacabelos, R. The histaminergic system in Alzheirmer's disease. Ann Psychiatr. 1995:5:127158.Google Scholar
11.Price, LH, Gooldard, AW, Barr, LC, Goodman, WK. Pharmacological challenges in anxiety disorders. In: Bloom, FE, Kupfer, DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven Press; 1995:13111323.Google Scholar
12.Leonard, BE. Do antidepressants act by changing endogenous endocoids in the depressed patient? J Psychopharmacol. 1993:7:13.CrossRefGoogle ScholarPubMed
13.McAdams, C, Leonard, BE. Changes in platelet aggregatory responses to collagen and 5-HT in depressed, schizophrenic and manic patients. Int Glin Psychopharmacol. 1992;7:8185.Google ScholarPubMed
14.McAdams, C, Colohan, FJ, Brophy, J, Leonard, BE. Alteration by a plasma factor of platelet aggregation and 5-HT uptake in depression. Biol Psychiatry. 1992:32:296298.CrossRefGoogle ScholarPubMed
15.Nugent, DF, Dinan, TG, Leonard, BE. Alteration by a plasma factor(s) of platelet aggregation in unmedicated unipolar depressed patients. J Affect Disord. 1994:31:6166.CrossRefGoogle ScholarPubMed
16.Nugent, DF, Dinan, TG, Leonard, BE. Further characterization of the inhibition of platelet aggregation by a plasma factor(s) in unmediated unipolar depressed patients. J Affect Disord. 1995:33:227231.CrossRefGoogle Scholar
17.Costa, E, Guidotti, A. Molecular mechanisms in the receptor action of benzodiazepines. Ann Rev Pharmacol. 1979:19:531545.CrossRefGoogle ScholarPubMed
18.Contreras, PCD, Maggio, DA, O'Donohue, TL. Evidence for an endogenous peptide ligand and antagonist for PCP receptors. In: Lai, H, La Bella, F. Lane, T, eds. Endocoicds. New York, NY: Alan R. Liss Inc; 1985:495498.Google Scholar
19.Young, AB, Frey, KA, Aganoff, BW. Receptor assays: in vitro and in vivo. In: Phelphs, MN, Mazzeotta, J, Schelbert, H, eds. Positron Emission Tomography and Autoradiography. New York, NY: Raven Press; 1986:73111.Google Scholar
20.Moseley, I. Diagnostic imaging in neurological diseases. New York, NY: Churchill-Livingstone; 1986.Google Scholar
21.Links, JM. Physics and instrumentation of positron emission tomography. In: Frost, JJ, Wayne, HN, eds. Quantitative Imaging: Neuroreceptors, Neurotransmitters and Enzymes. New York: Raven Press; 1990:3750.Google Scholar
22.Jaszczak, RJ. SPECT: state of the art scanners and reconstruction strategies. In: Diksic, M, Reba, RC, eds. Radiopharmaceuticals and Brain Pathology Studied with PET and SPECT. Boca Raton, Fla: CRC Press; 1991:93118.Google Scholar
23.Lim, KO, Rosenbloom, M, Pfefferbaum, A. In vivo structural brain assessment. In: Bloom, FE, Kupfer, DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press; 1995:887896.Google Scholar
24.George, MS. TMS: An issue worthy of a single focus. CNS Spectrums. 1997:2:1718.CrossRefGoogle Scholar
25.Broadhurst, PL. Pharmacogenetics. In: Iversen, LL, Iversen, SD, Snyder, SH, eds. Handbook of Psychopharmacology. New York, NY: Plenum Press; 1977:7:267320.Google Scholar
26.Gabizon, R, McKinley, MP, Groth, DF, Prusiner, SB. Immunoaffinity, purification and neurtralization of scrapie prion infectivity. Proc Natl Acad Sci USA. 1988;85;66176621.CrossRefGoogle Scholar
27.Schwarz, TL. Genetic analysis of neurotrasmitter release at the synapse. Curr Opin Neurobiol. 1994:4:633639.CrossRefGoogle Scholar
28.Ramirez-Solis, R, Davis, AC, Bradley, H. Gene targetting and cell typology. Methods Enzymol. 1993:225:890900.Google Scholar
29.Barondes, SH. Molecules and mental illness. New York, NY: WH Freeeman; 1993.Google Scholar
30.Yanker, BA, Duffy, JM, Kirschner, DA. Neurotrophic and neurotoxic effects of amyloid B protein: reversal by tachykinin neuropeptides. Science. 1990:250:279282.CrossRefGoogle Scholar
31.Grant, AGN, Silva, AJ. Trends Pharmacol Sci. 1994:17:7175.Google Scholar
32.Nalbautoglu, J. Tirado-Santiago, G. Sahsanil, A. et al.Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer precursor protein. Nature. 1997:387:500505.CrossRefGoogle Scholar
33.Leonard, BE. Stress and the immune system: immunological aspects of depressive illness. Int Rev Psychiatry. 1991:2:321330.CrossRefGoogle Scholar
34.Solomon, GF, Allansmith, M, McClennan, B, Ankraut, AA. Immunoglobulins in psychiatric patients. Arch Gen Psychiatry. 1969;20:272277.CrossRefGoogle ScholarPubMed
35.Ader, R, ed. Psychoneuroimmunology. New York, NY: Academic Press; 1981.Google Scholar
36.Leonard, BE, Miller, K, eds. Stress, the Immune System and Psychiatry. Chichester, England: John Wiley & Sons; 1995.Google Scholar
37.Locke, S. Psychological and behavioral treatments associated with the immune system. New York, NY: Institute for Advancement of Health; 1986.Google Scholar
38.Antoni, MH. Psychoneuroimmunology and HIV-1. J Consult Clin Psychol 1990:58:3849.CrossRefGoogle ScholarPubMed
39.McGeer, PL, McGeer, EG. The inflammatory response system in the brain. In: Siegel, G, Agranoff, B, Albers, RW, Molinoff, P, eds. Basic Neurochemistry. New York, NY: Raven Press; 1995:311332.Google Scholar