Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:30:44.990Z Has data issue: false hasContentIssue false

The neurobiology of obsessive–compulsive personality disorder: a systematic review

Published online by Cambridge University Press:  11 August 2021

Clara Marincowitz*
Affiliation:
South African Medical Research Council (MRC) Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
Christine Lochner
Affiliation:
South African Medical Research Council (MRC) Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
Dan J. Stein
Affiliation:
South African Medical Research Council (MRC) Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
*
*Author for correspondence: Clara Marincowitz, Email: [email protected]

Abstract

Background

A number of recent investigations have focused on the neurobiology of obsessive–compulsive personality disorder (OCPD). However, there have been few reviews of this literature with no detailed model proposed. We therefore undertook a systematic review of these investigations, aiming to map the available evidence and investigate whether it is possible to formulate a detailed model of the neurobiology of OCPD.

Methods

OCPD can be considered from both categorical and dimensional perspectives. An electronic search was therefore conducted using terms that would address not only OCPD as a category, but also related constructs, such as perfectionism, that would capture research on neuropsychology, neuroimaging, neurochemistry, and neurogenetics.

Results

A total of 1059 articles were retrieved, with 87 ultimately selected for abstract screening, resulting in a final selection of 49 articles focusing on neurobiological investigations relevant to OCPD. Impaired executive function and cognitive inflexibility are common neuropsychological traits in this condition, and suggest that obsessive–compulsive disorder (OCD) and OCPD may lie on a continuum. However, neuroimaging studies in OCPD indicate the involvement of specific neurocircuitry, including the precuneus and amygdala, and so suggest that OCD and OCPD may have important differences. Although OCPD has a heritable component, we found no well-powered genetic studies of OCPD.

Conclusion

Although knowledge in this area has advanced, there are insufficient data on which to base a comprehensive model of the neurobiology of OCPD. Given the clinical importance of OCPD, further work to understand the mechanisms that underpin this condition is warranted.

Type
Review
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Washington, DC: American Psychiatric Association; 2013.Google Scholar
Diedrich, A, Voderholzer, U. Obsessive–compulsive personality disorder: a current review. Curr Psychiatry Rep. 2015;17(2):2.CrossRefGoogle ScholarPubMed
de Reus, RJM, Emmelkamp, PMG. Obsessive–compulsive personality disorder: a review of current empirical findings. Personal Ment Health. 2012;6(1):121.CrossRefGoogle Scholar
Hertler, SC. A review and critique of obsessive–compulsive personality disorder etiologies. Eur J Psychol. 2014;10(1):168184. doi:10.5964/ejop.v10i1.679.CrossRefGoogle Scholar
Stein, DJ, Lochner, C. The psychobiology of OCPD. In: Grant, JE, Pinto, A, Chamberlain, SR, eds. Obsessive–Compulsive Personality Disorder. Washington, DC: American Psychiatric Association; 2020:127142.Google Scholar
Kessler, RC. The categorical versus dimensional assessment controversy in the sociology of mental illness. J Health Soc Behav. 2002;43(2):171188.CrossRefGoogle ScholarPubMed
Aycicegi-Dinn, A, Dinn, WM, Caldwell-Harris, CL. Obsessive–compulsive personality traits: compensatory response to executive function deficit? Int J Neurosci. 2009;119(4):600608.CrossRefGoogle ScholarPubMed
Garcia-Villamisar, D, Dattilo, J, Garcia-Martinez, M. Executive functioning in people with personality disorders. Curr Opin Psychiatry. 2017;30(1):3644.CrossRefGoogle ScholarPubMed
Fineberg, NA, Day, GA, De Koenigswarter, N, et al. The neuropsychology of obsessive–compulsive personality disorder: a new analysis. CNS Spectr. 2014;20(5):490499.CrossRefGoogle Scholar
Fineberg, NA, Sharma, P, Sivakumaran, T, Sahakian, B, Chamberlain, S. Does obsessive–compulsive personality disorder belong within the obsessive–compulsive spectrum? CNS Spectr. 2007;12(6):467482.CrossRefGoogle ScholarPubMed
Paast, N, Khosravi, Z, Memari, AH, Shayestehfar, M, Arbabi, M. Comparison of cognitive flexibility and planning ability in patients with obsessive compulsive disorder, patients with obsessive compulsive personality disorder, and healthy controls. Shanghai Arch Psychiatry. 2016;28(1):2834.Google ScholarPubMed
Pinto, A, Steinglass, JE, Greene, AL, Weber, EU, Simpson, HB. Capacity to delay reward differentiates obsessive–compulsive disorder and obsessive–compulsive personality disorder. Biol Psychiatry. 2014;75(8):653659.CrossRefGoogle ScholarPubMed
Grant, JE, Chamberlain, SR. Obsessive compulsive personality traits: understanding the chain of pathogenesis from health to disease. J Psychiatr Res. 2019;116:6973.CrossRefGoogle ScholarPubMed
Fineberg, NA, Chamberlain, SR, Goudriaan, AE, et al. New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr. 2014;19(1):6989. doi:10.1017/S1092852913000801.CrossRefGoogle ScholarPubMed
Ma, G, Fan, H, Shen, C, Wang, W. Genetic and neuroimaging features of personality disorders: state of the art. Neurosci Bull. 2016;32(3):286306.CrossRefGoogle ScholarPubMed
Payer, DE, Park, MTM, Kish, SJ, et al. Personality disorder symptomatology is associated with anomalies in striatal and prefrontal morphology. Front Hum Neurosci. 2015;9:472.CrossRefGoogle ScholarPubMed
Coutinho, J, Goncalves, OF, Soares, JM, Marques, P, Sampaio, A. Alterations of the default mode network connectivity in obsessive–compulsive personality disorder: a pilot study. Psychiatry Res - Neuroimaging. 2016;256:17. doi:10.1016/j.pscychresns.2016.08.007.CrossRefGoogle ScholarPubMed
Lei, H, Huang, L, Li, J, et al. Altered spontaneous brain activity in obsessive–compulsive personality disorder. Compr Psychiatry. 2020;96:152144.CrossRefGoogle ScholarPubMed
Gurok, MG, Korucu, T, Kilic, MC, Yildirim, H, Atmaca, M. Hippocampus and amygdalar volumes in patients with obsessive–compulsive personality disorder. J Clin Neurosci. 2019;64:259263.CrossRefGoogle ScholarPubMed
Atmaca, M, Korucu, T, Caglar Kilic, M, Kazgan, A, Yildirim, H. Pineal gland volumes are changed in patients with obsessive–compulsive personality disorder. J Clin Neurosci. 2019;70:221225.CrossRefGoogle ScholarPubMed
Nicoletti, A, Luca, A, Luca, M, et al. Obsessive–compulsive personality disorder in drug-naïve Parkinson’s disease patients. J Neurol. 2015;262:485486.CrossRefGoogle ScholarPubMed
Stein, DJ, Trestman, RL, Mitropoulou, V, Coccaro, EF, Hollander, E, Siever, LJ. Impulsivity and serotonergic function in compulsive personality disorder. J Neuropsychiatry Clin Neurosci. 1996;8(4):393398.Google ScholarPubMed
Ansseau, M, Troisfontaines, B, Papart, P, von Frenckell, R. Compulsive personality and serotonergic drugs. Eur Neuropsychopharmacolocy. 1993;3(3):288289.CrossRefGoogle Scholar
Kanehisa, M, Kawashima, C, Nakanishi, M, et al. Gender differences in automatic thoughts and cortisol and alpha-amylase responses to acute psychosocial stress in patients with obsessive–compulsive personality disorder. J Affect Disord. 2017;217:17.CrossRefGoogle ScholarPubMed
Bienvenu, OJ, Samuels, JF, Wuyek, LA, et al. Is obsessive–compulsive disorder an anxiety disorder, and what, if any, are spectrum conditions? A family study perspective. Psychol Med. 2012;42(1):113.CrossRefGoogle ScholarPubMed
Mancebo, MC, Eisen, JL, Grant, JE, Rasmussen, SA. Obsessive compulsive personality disorder and obsessive compulsive disorder: clinical characteristics, diagnostic difficulties, and treatment. Ann Clin Psychiatry. 2005;17(4):197204.CrossRefGoogle ScholarPubMed
Reichborn-Kjennerud, T, Czajkowski, N, Neale, MC, et al. Genetic and environmental influences on dimensional representations of DSM-IV cluster C personality disorders: a population-based multivariate twin study. Psychol Med. 2007;37(5):645653.CrossRefGoogle ScholarPubMed
Riddle, MA, Maher, BS, Wang, Y, et al. Obsessive–compulsive personality disorder: evidence for two dimensions. Depress Anxiety. 2016;33(2):128135.CrossRefGoogle ScholarPubMed
Taylor, S, Asmundson, GJG, Jang, KL. Etiology of obsessive–compulsive symptoms and obsessive–compulsive personality traits: common genes, mostly different environments. Depress Anxiety. 2011;28(10):863869.CrossRefGoogle ScholarPubMed
Light, KJ, Joyce, PR, Luty, SE, et al. Preliminary evidence for an association between a dopamine D3 receptor gene variant and obsessive–compulsive personality disorder in patients with major depression. Am J Med Genet Part B Neuropsychiatr Genet. 2006;141B(4):409413.CrossRefGoogle ScholarPubMed
Perez, M, Brown, JS, Vrshek-Schallhorn, S, Johnson, F, Joiner, TE. Differentiation of obsessive-compulsive-, panic-, obsessive-compulsive personality-, and non-disordered individuals by variation in the promoter region of the serotonin transporter gene. J Anxiety Disord. 2006;20(6):794806.CrossRefGoogle ScholarPubMed
Boraska, V, Davis, OSP, Cherkas, LF, et al. Genome-wide association analysis of eating disorder-related symptoms, behaviors, and personality traits. Am J Med Genet Part B Neuropsychiatr Genet. 2012;159B(7):803811.CrossRefGoogle ScholarPubMed
Costa, PTJ, McCrae, RR. Normal personality assessment in clinical practice: The NEO personality inventory. Psychol Assess. 1992;4(1):513.CrossRefGoogle Scholar
Cloninger, CR. A systematic method for clinical description and classification of personality variants: a proposal. Arch Gen Psychiatry. 1987;44(6):573588.CrossRefGoogle ScholarPubMed
Insel, T, Cuthbert, B, Garvey, M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry Online. 20(10):748751.Google Scholar
De Fruyt, F, De Clercq, BJ, De, VWL, Van Heeringen, K. The validity of cloninger’s psychobiological model versus the five-factor model to predict DSM-IV personality disorders in a heterogeneous psychiatric sample: domain facet and residualized facet descriptions. J Pers. 2006;74(2):479510.CrossRefGoogle Scholar
Costa, P, Samuels, J, Bagby, M, Daffin, L, Norton, H. Obsessive–compulsive personality disorder: a review. In: Maj, M, Akiskal, HS, Mezzich, JE, Okahsa, A, eds. Personality Disorders. Chichester: John Wiley and Sons Ltd; 2005:406439.Google Scholar
Lee, SR, Wu, KD. Feelings of incompleteness explain symptoms of OCD and OCPD beyond harm avoidance. J Obsessive Compuls Relat Disord. 2019;21:151157.CrossRefGoogle Scholar
Ettelt, S, Grabe, HJ, Ruhrmann, S, et al. Harm avoidance in subjects with obsessive–compulsive disorder and their families. J Affect Disord. 2008;107(1–3):265269.CrossRefGoogle ScholarPubMed
Samuels, J, Nestadt, G, Bienvenu, OJ, et al. Personality disorders and normal personality dimensions in obsessive–compulsive disorder. Br J Psychiatry. 2000;177:457462.CrossRefGoogle ScholarPubMed
Ormel, J, Bastiaansen, A, Riese, H, et al. The biological and psychological basis of neuroticism: current status and future directions. Neurosci Biobehav Rev. 2013;37(1):5972.CrossRefGoogle ScholarPubMed
Rodman, AM, Deckersbach, T, Chou, T, Kong, J, Gollub, RL, Dougherty, DD. A preliminary study of the opioid system and personality traits using positron emission tomography. Mol Neuropsychiatry. 2017;3(1):1218.Google ScholarPubMed
Baeken, C, Marinazzo, D, Van Schuerbeek, P, et al. Left and right amygdala - mediofrontal cortical functional connectivity is differentially modulated by harm avoidance. PLoS One. 2014;9(4):e95740.CrossRefGoogle ScholarPubMed
Kyeong, S, Kim, E, Park, HJ, Hwang, DU. Functional network organizations of two contrasting temperament groups in dimensions of novelty seeking and harm avoidance. Brain Res. 2014;1575:3344.CrossRefGoogle ScholarPubMed
Levita, L, Hoskin, R, Champi, S. Avoidance of harm and anxiety: a role for the nucleus accumbens. Neuroimage. 2012;62(1):189198. doi:10.1016/j.neuroimage.2012.04.059.CrossRefGoogle ScholarPubMed
Forbes, CE, Poore, JC, Krueger, F, Barbey, AK, Solomon, J, Grafman, J. The role of executive function and the dorsolateral prefrontal cortex in the expression of neuroticism and conscientiousness. Soc Neurosci. 2014;9(2):139151.CrossRefGoogle ScholarPubMed
Laricchiuta, D, Petrosini, L, Piras, F, et al. Linking novelty seeking and harm avoidance personality traits to basal ganglia: volumetry and mean diffusivity. Brain Struct Funct. 2014;219(3):793803.CrossRefGoogle ScholarPubMed
Laricchiuta, D, Petrosini, L, Piras, F, et al. Linking novelty seeking and harm avoidance personality traits to cerebellar volumes. Hum Brain Mapp. 2014;35(1):285296.CrossRefGoogle ScholarPubMed
Petrosini, L, Cutuli, D, Picerni, E, Laricchiuta, D. Viewing the personality traits through a cerebellar lens: a focus on the constructs of novelty seeking, harm avoidance, and alexithymia. Cerebellum. 2017;16(1):178190.CrossRefGoogle Scholar
Gardini, S, Cloninger, CR, Venneri, A. Individual differences in personality traits reflect structural variance in specific brain regions. Brain Res Bull. 2009;79(5):265270.CrossRefGoogle ScholarPubMed
Kim, JH, Son, YD, Kim, HK, et al. Association of harm avoidance with dopamine D2/3 receptor availability in striatal subdivisions: a high resolution PET study. Biol Psychol. 2011;87(1):164167.CrossRefGoogle ScholarPubMed
Wu, IT, Lee, IH, Yeh, TL, et al. The association between the harm avoidance subscale of the tridimensional personality questionnaire and serotonin transporter availability in the brainstem of male volunteers. Psychiatry Res - Neuroimaging. 2010;181(3):241244.CrossRefGoogle ScholarPubMed
Baeken, C, Bossuyt, A, De Raedt, R. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance. Psychiatry Res - Neuroimaging. 2014;221(2):162168.CrossRefGoogle ScholarPubMed
Tuominen, L, Salo, J, Hirvonen, J, et al. Temperament trait harm avoidance associates with μ-opioid receptor availability in frontal cortex: a PET study using [11C]carfentanil. Neuroimage. 2012;61(3):670676.CrossRefGoogle ScholarPubMed
Fineberg, NA, Potenza, MN, Chamberlain, SR, et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010;35(3):591604.CrossRefGoogle ScholarPubMed
Calvo, R, Lázaro, L, Castro-Fornieles, J, Font, E, Moreno, E, Toro, J. Obsessive–compulsive personality disorder traits and personality dimensions in parents of children with obsessive-compulsive disorder. Eur Psychiatry. 2009;24(3):201206.CrossRefGoogle ScholarPubMed
Dochtermann, NA, Schwab, T, Sih, A. The contribution of additive genetic variation to personality variation: heritability of personality. Proc R Soc B Biol Sci. 2014;282(1798): 20142201.CrossRefGoogle Scholar
Sallis, H, Smith, GD, Munafò, MR. Genetics of biologically based psychological differences. Philos Trans R Soc B Biol Sci. 2018;373(1744): 20170162.CrossRefGoogle ScholarPubMed
Balestri, M, Calati, R, Serretti, A, De Ronchi, D. Genetic modulation of personality traits. Int Clin Psychopharmacol. 2014;29(1):115.CrossRefGoogle ScholarPubMed
Kim, SJ, Cho, S-J, Jang, HM, et al. Interaction between brain-derived neurotrophic factor Val66Met polymorphism and recent negative stressor in harm avoidance. Neuropsychobiology. 2010;61(1):1926.CrossRefGoogle ScholarPubMed
Montag, C, Basten, U, Stelzel, C, Fiebach, CJ, Reuter, M. The BDNF Val66Met polymorphism and anxiety: support for animal knock-in studies from a genetic association study in humans. Psychiatry Res. 2010;179(1):8690.CrossRefGoogle ScholarPubMed
Zhou, Z, Zhu, G, Hariri, AR, et al. Genetic variation in human NPY expression affects stress response and emotion. Nature. 2008;452(7190):9971001. doi:10.1038/nature06858.CrossRefGoogle ScholarPubMed
Colic, L, Li, M, Demenescu, LR, et al. GAD65 promoter polymorphism rs2236418 modulates harm avoidance in women via inhibition/excitation balance in the rostral ACC. J Neurosci. 2018;38(22):50675077.CrossRefGoogle ScholarPubMed
MacMurray, J, Comings, DE, Napolioni, V. The gene-immune-behavioral pathway: Gamma-interferon (IFN-γ) simultaneously coordinates susceptibility to infectious disease and harm avoidance behaviors. Brain Behav Immun. 2014;35:169175.CrossRefGoogle ScholarPubMed
Gade-Andavolu, R, MacMurray, J, Comings, DE, Calati, R, Chiesa, A, Serretti, A. Association between the estrogen receptor TA polymorphism and Harm avoidance. Neurosci Lett. 2009;467(2):155158.CrossRefGoogle ScholarPubMed
Dina, C, Nemanov, L, Gritsenko, I, et al. Fine mapping of a region on chromosome 8p gives evidence for a QTL contributing to individual differences in an anxiety-related personality trait: TPQ harm avoidance. Am J Med Genet Part B Neuropsychiatr Genet. 2005;132B(1):104108.CrossRefGoogle Scholar
Heck, A, Pfister, H, Czamara, D, et al. Evidence for associations between MDGA2 polymorphisms and harm avoidance – replication and extension of a genome-wide association finding. Psychiatr Genet. 2011;21(5):257260.CrossRefGoogle ScholarPubMed
Nagel, M, Jansen, PR, Stringer, S, et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50(7):920927.CrossRefGoogle ScholarPubMed
Opel, N, Amare, AT, Redlich, R, et al. Cortical surface area alterations shaped by genetic load for neuroticism. Mol Psychiatry. 2020; 25: 34223431.CrossRefGoogle ScholarPubMed
De Moor, MHM, Costa, PT, Terracciano, A, et al. Meta-analysis of genome-wide association studies for personality. Mol Psychiatry. 2012;17(3):337349.CrossRefGoogle ScholarPubMed
Buss, DM. Evolutionary biology and personality psychology: toward a conception of human nature and individual differences. Am Psychol. 1984;39(10):11351147.CrossRefGoogle Scholar
Buss, DM. How can evolutionary psychology successfully explain personality and individual differences? Perspect Psychol Sci. 2009;4(4):359366.CrossRefGoogle ScholarPubMed
Dingemanse, NJ, Wolf, M. Recent models for adaptive personality differences: a review. Philos Trans R Soc B Biol Sci. 2010;365(1560):39473958.CrossRefGoogle ScholarPubMed
Nettle, D. The evolution of personality variation in humans and other animals. Am Psychol. 2006;61(6):622631.CrossRefGoogle ScholarPubMed
Nettle, D, Penke, L. Personality: bridging the literatures from human psychology and behavioural ecology. Philos Trans R Soc B Biol Sci. 2010;365(1560):40434050.CrossRefGoogle ScholarPubMed
Segal, NL, MacDonald, KB. Behavioral genetics and evolutionary psychology: unified perspective on personality research. Hum Biol. 1998;70(2):159184. http://www.ncbi.nlm.nih.gov/pubmed/9549234. Accessed December 5, 2019.Google ScholarPubMed
Macarthur, RH, Wilson, EO. The Theory of Island Biogeography. 13th ed. Princeton: Princeton University Press; 2001.CrossRefGoogle Scholar
Stearns, SC. Life-history tactics: a review of the ideas. Q Rev Biol. 1976;51(1):347.CrossRefGoogle ScholarPubMed
Del Giudice, M. An evolutionary life history framework for psychopathology. Psychol Inq. 2014;25(3–4):261300.CrossRefGoogle Scholar
Brüne, M. Borderline personality disorder: Why “fast and furious”? Evol Med public Heal. 2016;2016(1):5266.CrossRefGoogle Scholar
Hertler, SC. The biology of obsessive–compulsive personality disorder symptomatology: identifying an extremely K-selected life history variant. Evol Psychol Sci. 2016;2(1):115.CrossRefGoogle Scholar
Niemelä, PT, Dingemanse, NJ. Meta-analysis reveals weak associations between intrinsic state and personality. Proc R Soc B Biol Sci. 2018;285(1873): 20172823.CrossRefGoogle ScholarPubMed
Thompson, PM, Dennis, EL, Gutman, BA, et al. ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. Neuroimage. 2017;145:389408.CrossRefGoogle ScholarPubMed