Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T10:39:36.213Z Has data issue: false hasContentIssue false

Complexity and Neuropsychology: New Perspectives in the Study of Emotions and Cognitive Functions

Published online by Cambridge University Press:  07 November 2014

Abstract

The present paper is aimed at providing an outline of the process of reconceptualization of cognitive functions and emotions in neuropsychology, recently promoted by the acknowledgment of complex, nonlinear dynamics in brain structure and function.

Type
Feature Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McClelland, JL, Rumelhart, DE. Distributed memory and the representation of general and specific information. J Exp Psychol. 1985;114:159188.CrossRefGoogle ScholarPubMed
2.Hebb, DO. The Organization of Behavior. New York, NY: Wiley & Sons; 1949.Google Scholar
3.Changeux, JP, Danchin, A. Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976;264:705712.CrossRefGoogle ScholarPubMed
4.Mountcastle, VB. An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman, GM, Mountcastle, VB, eds. The Mindful Brain. New York, NY: Plenum; 1978:750.Google Scholar
5.Hawkins, RD, Abrams, TM, Carew, TJ, et al. A cellular mechanism of classical conditioning in aplysia activity-dependent amplification of presynaptic facilitation. Science (Wash). 1983;219:400405.CrossRefGoogle ScholarPubMed
6.Carew, TJ, Hawkins, RD, Abrams, TW, et al. A test of Hebb's postulate at identified synapses which mediate classical conditioning in aplysia. J Neurosci. 1984;4:12171224.CrossRefGoogle ScholarPubMed
7.Buonomano, DV, Byrne, JH. Long-term synaptic changes produced by a cellular analog of classical conditioning in aplysia. Science (Wash). 1990;249:420423.CrossRefGoogle ScholarPubMed
8.Kohonen, T. Self-Organization and Associative Memory. Berlin, Germany: Springer; 1984.Google Scholar
9.Edelman, GM. The Remembered Present. New York, NY: Basic Books; 1989.Google Scholar
10.Fuster, JM. Memory in the Cerebral Cortex. Cambridge, Mass: The MIT Press; 1995.Google Scholar
11.McNaughton, BL, Douglas, RM, Goddard, GV. Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res. 1978;157:277293.CrossRefGoogle ScholarPubMed
12.Barrionuevo, G, Brown, TH. Associative long-term potentiation in hippocampal slice. Proc Natl Acad Sci USA. 1983;80:73477351.CrossRefGoogle Scholar
13.Larson, J, Wong, D, Lynch, G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 1986;368:347350.CrossRefGoogle ScholarPubMed
14.Iriki, A, Pavlides, C, Keller, A, et al. Long-term potentiation in the motor cortex. Science. 1989;245:13851387.CrossRefGoogle ScholarPubMed
15.Baranyi, A, Szente, MB, Woody, CD. Properties of associative long-lasting potentiation induced by cellular conditioning in the motor cortex of conscious cats. Neuroscience. 1991;42:321334.CrossRefGoogle ScholarPubMed
16.Goldman-Rakic, PS. Topography of cognition: parallel distributed networks in primate association cortex. Ann Rev Neurosci. 1988;11:137156.CrossRefGoogle ScholarPubMed
17.Van Essen, DC. Functional organization of primate visual cortex. In: Peters, A, Jones, EG, eds. Cerebral Cortex. III. New York, NY: Plenum; 1985:259329.Google Scholar
18.Hubel, DH, Wiesel, TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195:215243.CrossRefGoogle ScholarPubMed
19.Van Essen, DC, Maunsell, JHR. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 1983;6:370375.CrossRefGoogle Scholar
20.Desimone, R, Albright, TD, Gross, CG, et al. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci. 1984;4:20512062.CrossRefGoogle ScholarPubMed
21.Fuster, JM. Inferotemporal units in selective visual attention and short-term memory. J Neurophysiol. 1990;64:681697.CrossRefGoogle ScholarPubMed
22.Miyashita, Y, Chang, HS. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature. 1988;331:6870.CrossRefGoogle ScholarPubMed
23.Koch, KW, Fuster, JM. Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res. 1989;76:292306.CrossRefGoogle ScholarPubMed
24.Globus, GG, Arpaia, JP. Psychiatry and the new dynamics. Biol Psychiatry. 1994;35:352364.CrossRefGoogle ScholarPubMed
25.Cicchetti, D, Tucker, D. Development and self-regulatory structures of the mind. Development and Psychopathology. 1994;6:533549.CrossRefGoogle Scholar
26.Fair, CM. Cortical Memory Functions. Boston, Mass: Birkhäuser; 1992.CrossRefGoogle Scholar
27.Brothers, L, Ring, B. Mesial temporal neurons in the macaque monkey with responses selective for aspects of social stimuli. Behav Brain Res. 1993;57:5361.CrossRefGoogle ScholarPubMed
28.Papez, JW. A proposed mechanism of emotions. Arch Neurol Psych. 1937;38:725743.CrossRefGoogle Scholar
29.McLean, PD. Psychosomatic disease and “visceral brain,” recent developments bearing on the Papez theory of emotion. Psychosom Med. 1950;11:338353.CrossRefGoogle Scholar
30.Jones, B, Mishkin, M. Limbic lesion and the problem of stimulus reinforcement associations. Exp Neurol. 1972;36:362377.CrossRefGoogle ScholarPubMed
31.Levy, J. Individual differences in cerebral asymmetries: theoretical issues and experimental considerations. In: Hellige, J.B.,ed. Cerebral Hemisphere Asymmetry: Method, Theory, and Application. New York, NY: Praeger; 1983;465497.Google Scholar
32.Swanson, LW. The hippocampus and the concept of the limbic system. In: Seifert, W, ed. Neurobiology of the Hippocampus. New York, NY: Academic Press; 1983.Google Scholar
33.Derryberry, D, Tucker, D. Neural mechanism of emotion. J Consult Clin Psychol. 1992;60:329338.CrossRefGoogle ScholarPubMed
34.Heller, W. The neuropsychology of emotion: developmental patterns and implications for psychopathology. In: Stein, NL, Leventhal, B, Trabasso, T, eds. Psychological and Biological Approaches to Emotion. Hillsdale, NJ: Lawrence Erlbaum Associates; 1990:167211.Google Scholar
35.Davidson, RJ, Ekman, P, Saron, CD, et al. Approach-with-drawal and cerebral asymmetry: emotional expression and brain psychology. I. J Pers Soc Psychol. 1990;58:330341.CrossRefGoogle Scholar
36.Robinson, RG, Kubos, KL, Starr, LB, et al. Mood disorders in stroke patients: importance of location of lesion. Brain. 1984;107:8193.CrossRefGoogle ScholarPubMed
37.Starkstein, SE, Boston, JD, Robinson, RG. Mechanisms of mania after brain injury: 12 case reports and review of the literature. J Nerv Ment Dis. 1988;176:87100.CrossRefGoogle ScholarPubMed
38.Whitlock, FA. Symptomatic Affective Disorders. New York, NY: Academic Press; 1982.Google Scholar
39.Galderisi, S, Maj, M. Lateralizzazione emisferica delle emozioni: aspetti teorici e metodologici. In: Vella, G, Siracusano, A, eds. Emozioni e psichiatria. Torino, Italy: Utet; 1996;2540.Google Scholar
40.Lyons, W. Emotion. Cambridge, England: Cambridge University Press; 1980.CrossRefGoogle Scholar
41.Power, M, Dalgleish, T. Cognition and Emotion: From Order to Disorder. Hove, UK: Psychology Press; 1997.Google Scholar
42.Ellsworth, P. Some implications of cognitive appraisal theories of emotion. In: Strongman, KT, ed. International Review of Studies on Emotion. I. Chichester, UK: Wiley; 1991.Google Scholar
43.Beck, AT, Rush, AJ, Shaw, BF, et al. Cognitive Therapy of Supression. New York, NY: Guilford Press; 1979.Google Scholar
44.Maturana, HR. The organization of the living: a theory of the living organization. International Journal of Machine Studies. 1975;7:334.Google Scholar