Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:52:33.313Z Has data issue: false hasContentIssue false

Neurobiology of Obsessive-Compulsive Disorder: Serotonin and Beyond

Published online by Cambridge University Press:  07 November 2014

Abstract

The evidence for the involvement of the serotonergic system in the pathogenesis of obsessive-compulsive disorder (OCD) is circumstantial at best, despite being the focus for most pathophysiological research over the last 2 decades. This hypothesis was initially motivated by the observed differential efficacy of selective serotonin reuptake inhibitors in alleviating OCD symptoms. Direct evidence that serotonergic perturbations are implicated in the pathophysiology of OCD is still sparse. There is growing evidence, from both preclinical and clinical studies, that the dopamine system may also be involved in the pathogenesis of OCD, and that dopaminergic and serotonergic pathways play a role in the genesis and maintenance of obsessive-compulsive symptoms. The complex interactions between both systems, the phenotypic heterogeneity of the disorder, and the limitations of the available tests to probe both systems, make it as yet impossible to draw firm conclusions as to how these systems are implicated. Further studies with more selective pharmacologic agents and neurocognitive probes in humans, studies using deep brain stimulation in combination with neuroimaging, and the development of better animal models for OCD may further our understanding of this disabling condition.

Type
Supplements
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Denys, D, Zohar, J, Westenberg, HG. The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence. J Clin Psychiatry. 2004;65(suppl 14):1117.Google ScholarPubMed
2. Chou-Green, JM, Holscher, TD, Dallman, MF, et al. Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav. 2003:78:641649.CrossRefGoogle ScholarPubMed
3. Tsaltas, E, Kontis, D, Chrysikakou, S, et al. Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry. 2005:57:11761185.CrossRefGoogle ScholarPubMed
4. Joel, D, Doljansky, J, Schiller, D. ‘Compulsive’ lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. Eur J Neurosci. 2005:21:22522262.CrossRefGoogle Scholar
5. Joel, D, Doljansky, J. Selective alleviation of compulsive lever-pressing in rats by D,1 but not D2, blockade: possible implications for the involvement of D1, receptors in obsessive-compulsive disorder. Neuropsychopharmacology. 2003:28:7785.CrossRefGoogle Scholar
6. Campbell, KM, de Lecea, L, Severynse, DM, et al. OCD-Like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci. 1999;19:50445053.CrossRefGoogle ScholarPubMed
7. Eilam, D, Szechtman, H. Psychostimulant-induced behavior as an animal model of obsessive-compulsive disorder: an ethological approach to the form of compulsive rituals. CNS Spectr. 2005:10:191202.CrossRefGoogle Scholar
8. Sullivan, RM, Talangbayan, H, Einat, H, et al. Effects of quinpirole on central dopamine systems in sensitized and non-sensitized rats. Neuroscience. 1998:83:781789.CrossRefGoogle ScholarPubMed
9. Thoren, P, Asberg, M, Bertilsson, L, et al. Clomipramine treatment of obsessive-compulsive disorder. II. Biochemical aspects. Arch Gen Psychiatry. 1980;37:12891294.CrossRefGoogle ScholarPubMed
10. Insel, TR, Mueller, EA, Alterman, I, et al. Obsessive-compulsive disorder and serotonin: is there a connection? Biol Psychiatry. 1985;20:11741188.CrossRefGoogle ScholarPubMed
11. Leckman, JF, Goodman, WK, Anderson, GM, et al. Cerebrospinal fluid biogenic amines in obsessive compulsive disorder, Tourette's syndrome, and healthy controls. Neuropsychopharmacology. 1995:12:7386.CrossRefGoogle ScholarPubMed
12. Bornstein, RA, Baker, GB. Urinary indoleamines in Tourette syndrome patients with obsessive-compulsive characteristics. Psychiatry Res. 1992;41:267274.CrossRefGoogle ScholarPubMed
13. de Groot, CM, Bornstein, RA, Baker, GB. Obsessive-compulsive symptom clusters and urinary amine correlates in Tourette syndrome. J Nerv Ment Dis. 1995;183:224230.CrossRefGoogle ScholarPubMed
14. Cath, DC, Spinhoven, P, Landman, AD, et al. Psychopathology and personality characteristics in relation to blood serotonin in Tourette's syndrome and obsessive-compulsive disorder. J Psychopharmacol. 2001;15:111119.CrossRefGoogle ScholarPubMed
15. Delorme, R, Betancur, C, Callebert, J, et al. Platelet serotonergic markers as endophenotypes for obsessive-compulsive disorder. Neuropsychopharmacology. 2005;30:15391547.CrossRefGoogle ScholarPubMed
16. Delorme, R, Chabane, N, Callebert, J, et al. Platelet serotonergic predictors of clinical improvement in obsessive compulsive disorder. J Clin Psychopharmacol. 2004;24:1823.CrossRefGoogle ScholarPubMed
17. Brewerton, TD, Flament, MF, Rapoport, JL, et al. Seasonal effects on platelet 5-HT content in patients with OCD and controls. Arch Gen Psychiatry. 1993:50:409.Google ScholarPubMed
18. Flament, MF, Rapoport, JL, Murphy, DL, et al. Biochemical changes during clomipramine treatment of childhood obsessive-compulsive disorder. Arch Gen Psychiatry. 1987;44:219225.CrossRefGoogle ScholarPubMed
19. Hanna, GL, Yuwiler, A, Cantwell, DP. Whole blood serotonin in juvenile obsessive-compulsive disorder. Biol Psychiatry. 1991;29:738744.CrossRefGoogle ScholarPubMed
20. Hanna, GL, Yuwiler, A, Coates, JK. Whole blood serotonin and disruptive behaviors in juve-nile obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 1995;34:2835.CrossRefGoogle ScholarPubMed
21. Sallee, FR, Richman, H, Beach, K, et al. Platelet serotonin transporter in children and adolescents with obsessive-compulsive disorder or Tourette's syndrome. J Am Acad Child Adolesc Psychiatry. 1996;35:16471656.CrossRefGoogle ScholarPubMed
22. Weizman, A, Mandel, A, Barber, Y, et al. Decreased platelet imipramine binding in Tourette syndrome children with obsessive-compulsive disorder. Biol Psychiatry. 1992;31:705711.CrossRefGoogle ScholarPubMed
23. Marazziti, D, Rossi, A, Gemignani, A, et al. Decreased platelet 3H-paroxetine binding in obsessive-compulsive patients. Neuropsychobiology 1996;34:184187 CrossRefGoogle ScholarPubMed
24. Marazziti, D, Hollander, E, Lensi, P, et al. Peripheral markers of serotonin and dopamine function in obsessive-compulsive disorder. Psychiatry Res. 1992;42:4151.CrossRefGoogle ScholarPubMed
25. Benkelfat, C, Mefford, IN, Masters, CF, et al. Plasma catecholamines and their metabolites in obsessive-compulsive disorder. Psychiatry Res. 1991;37:321331.CrossRefGoogle ScholarPubMed
26. Swedo, SE, Leonard, HL, Kruesi, MJ, et al. Cerebrospinal fluid neurochemistry in children and adolescents with obsessive-compulsive disorder. Arch Gen Psychiatry. 1992;49:2936.CrossRefGoogle ScholarPubMed
27. Hollander, E, Stein, DJ, Saoud, JB, et al. Effects of fenfluramine on plasma HVA in OCD. Psychiatry Res. 1992;42:185188.CrossRefGoogle ScholarPubMed
28. Zahn, TP, Kruesi, MJ, Swedo, SE, et al. Autonomic activity in relation to cerebro-spinal fluid neurochemistry in obsessive and disruptive children and adolescents. Psychophysiology. 1996;33:731739.CrossRefGoogle ScholarPubMed
29. Zohar, J, Mueller, EA, Insel, TR, et al. Serotonergic responsivity in obsessive-compulsive disorder. Comparison of patients and healthy controls. Arch Gen Psychiatry. 1987;44:946951.CrossRefGoogle ScholarPubMed
30. Zohar, J, Insel, TR, Zohar-Kadouch, RC, et al. Serotonergic responsivity in obsessive-compulsive disorder. Effects of chronic clomipramine treatment. Arch Gen Psychiatry. 1988;45:167172.CrossRefGoogle ScholarPubMed
31. Hollander, E, DeCaria, CM, Nitescu, A, et al. Serotonergic function in obsessive-compulsive disorder. Behavioral and neuroendocrine responses to oral m-chlorophenylpiperazine and fenfluramine in patients and healthy volunteers. Arch Gen Psychiatry. 1992;49:2128.CrossRefGoogle ScholarPubMed
32. Chamey, DS, Goodman, WK, Price, LH, et al. Serotonin function in obsessive-compulsive disorder. A comparison of the effects of tryptophan and m-chlorophenylpiperazine in patients and healthy subjects. Arch Gen Psychiatry. 1988;45:177185.Google Scholar
33. Goodman, WK, McDougle, CJ, Price, LH, et al. m-Chlorophenylpiperazine in patients with obsessive-compulsive disorder: absence of symptom exacerbation. Biol Psychiatry. 1995;38:138149.CrossRefGoogle ScholarPubMed
34. Gross-lsseroff, R, Cohen, R, Sasson, Y, et al. Serotonergic dissection of obsessive compulsive symptoms: a challenge study with m-chlorophenylpiperazine and sumatriptan. Neuropsychobiology. 2004;50:200205.CrossRefGoogle Scholar
35. Ho Pian, KL, Westenberg, HG, den Boer, JA, et al. Effects of meta-chlorophenylpiperazine on cerebral blood flow in obsessive-compulsive disorder and controls. Biol Psychiatry. 1998;44:367370.CrossRefGoogle ScholarPubMed
36. Lesch, KP, Hoh, A, Schulte, HM, et al. Long-term fluoxetine treatment decreases 5-HT1A receptor responsivity in obsessive-compulsive disorder. Psychopharmacology (Berl). 1991;105:415420.CrossRefGoogle ScholarPubMed
37. Ho Pian, KL, Westenberg, HG, van Megen, HJ, et al. Sumatriptan (5-HT1D receptor agonist) does not exacerbate symptoms in obsessive compulsive disorder. Psychopharmacology (Berl). 1998;140:365370.CrossRefGoogle Scholar
38. Stein, DJ, Van Heerden, B, Wessels, CJ, et al. Single photon emission computed tomography of the brain with Tc-99m HMPAO during sumatriptan challenge in obsessive-compulsive disorder: investigating the functional role of the serotonin auto-receptor. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23:10791099.CrossRefGoogle ScholarPubMed
39. Boshuisen, ML, den Boer, JA. Zolmitriptan (a 5-HT1B/1D receptor agonist with central action) does not increase symptoms in obsessive compulsive disorder. Psychopharmacology (Berl). 2000;152:7479.CrossRefGoogle Scholar
40. McBride, PA, DeMeo, MD, Sweeney, JA, et al. Neuroendocrine and behavioral responses to challenge with the indirect serotonin agonist dl-fenfluramine in adults with obsessive-compulsive disorder. Biol Psychiatry. 1992;31:1934.CrossRefGoogle ScholarPubMed
41. Hewlett, WA, Vinogradov, S, Martin, K, et al. Fenfluramine stimulation of prolactin in obsessive-compulsive disorder. Psychiatry Res. 1992;42:8192.CrossRefGoogle ScholarPubMed
42. Lucey, JV, O'Keane, V, Butcher, G, et al. Cortisol and prolactin responses to d-fenfluramine in non-depressed patients with obsessive-compulsive disorder: a comparison with depressed and healthy controls. Br J Psychiatry. 1992;161:517521.CrossRefGoogle ScholarPubMed
43. Little, KY, Zhang, L, Desmond, T, et al. Striatal dopaminergic abnormalities in human cocaine users. Am J Psychiatry. 1999;156:238245.CrossRefGoogle ScholarPubMed
44. McDougle, CJ, Goodman, WK, Delgado, PL, et al. Pathophysiology of obsessive-compulsive disorder. Am J Psychiatry. 1989;146:3501351.Google ScholarPubMed
45. Rosse, RB, Fay-McCarthy, M, Collins, JP Jr., et al. The relationship between cocaine-induced paranoia and compulsive foraging: a preliminary report. Addiction. 1994;89:10971104.CrossRefGoogle ScholarPubMed
46. Rosse, RB, Fay-McCarthy, M, Collins, JP Jr., et al. Transient compulsive foraging behavior associated with crack cocaine use. Am J Psychiatry. 1993;150:155156.Google ScholarPubMed
47. Koizumi, HM. Obsessive-compulsive symptoms following stimulants. Biol Psychiatry. 1985;20:13321333.CrossRefGoogle ScholarPubMed
48. Satel, SL, McDougle, CJ. Obsessions and compulsions associated with cocaine abuse. Am J Psychiatry. 1991;148:947.Google ScholarPubMed
49. Rosse, RB, McCarthy, MF, Alim, TN, et al. Saccadic distractibility in cocaine dependent patients: a preliminary laboratory exploration of the cocaine-OCD hypothesis. Drug Alcohol Depend. 1994;35:2530.CrossRefGoogle ScholarPubMed
50. Kouris, S. Methylphenidate-induced obsessive-compulsiveness. J Am Acad Child Adolesc Psychiatry. 1998;37:135.CrossRefGoogle ScholarPubMed
51. Kotsopoulos, S, Spivak, M. Obsessive-compulsive symptoms secondary to methylpheni-date treatment. Can J Psychiatry. 2001;46:89.Google Scholar
52. Frye, PE, Arnold, LE. Persistent amphetamine-induced compulsive rituals: response to pyridoxine(B6). Biol Psychiatry. 1981;16:583587.Google ScholarPubMed
53. Iyo, M, Sekine, Y, Matsunaga, T, et al. Methamphetamine-associated obsessional symptoms and effective risperidone treatment: a case report. J Clin Psychiatry. 1999;60:337338.CrossRefGoogle ScholarPubMed
54. Lemus, CZ, Robinson, DG, Kronig, M, et al. Behavioral responses to a dopaminergic challenge in obsessive-compulsive disorder. J Anxiety Disorders. 1991;5:369–273.CrossRefGoogle Scholar
55. Pitchot, W, Hansenne, M, Moreno, AG, et al. Growth hormone response to apomorphine in obsessive-compulsive disorder. J Psychiatry Neurosci. 1996;21:343345.Google ScholarPubMed
56. Brambilla, F, Perna, G, Bussi, R, et al. Dopamine function in obsessive compulsive disorder: cortisol response to acute apomorphine stimulation. Psychoneuroendocrinology. 2000;25:301310.CrossRefGoogle ScholarPubMed
57. Brambilla, F, Bellodi, L, Perna, G, et al. Dopamine function in obsessive-compulsive disorder: growth hormone response to apomorphine stimulation. Biol Psychiatry. 1997;42:889897.CrossRefGoogle ScholarPubMed
58. Longhurst, JG, Carpenter, LL, Epperson, CM, et al. Effects of catecholamine depletion with AMPT (alpha-methyl-para-tyrosine) in obsessive-compulsive disorder. Biol Psychiatry. 1999;46:573576.CrossRefGoogle ScholarPubMed
59. Ceccherini-Nelli, A, Guazzelli, M. Treatment of refractory OCD with the dopamine agonist bromocriptine. J Clin Psychiatry. 1994;55:415416.Google ScholarPubMed
60. Goodman, WK, Price, LH, Delgado, PL, et al. Specificity of serotonin reuptake inhibitors in the treatment of obsessive-compulsive disorder. Comparison of fluvoxamine and desipramine. Arch Gen Psychiatry. 1990;47:577585.CrossRefGoogle ScholarPubMed
61. Zohar, J, Insel, TR. Obsessive-compulsive disorder: psychobiological approaches to diagnosis, treatment, and pathophysiology. Biol Psychiatry. 1987;22:667687.CrossRefGoogle ScholarPubMed
62. Leonard, HL, Swedo, SE, Rapoport, JL, et al. Treatment of obsessive-compulsive disorder with clomipramine and desipramine in children and adolescents. A double-blind cross-over comparison. Arch Gen Psychiatry. 1989;46:10881092.CrossRefGoogle Scholar
63. Hoehn-Saric, R, Ninan, P, Black, DW, et al. Multicenter double-blind comparison of sertraline and desipramine for concurrent obsessive-compulsive and major depressive disorders. Arch Gen Psychiatry. 2000;57:7682.CrossRefGoogle ScholarPubMed
64. Denys, D, van der, WN, van Megen, HJ, et al. A double blind comparison of venlafaxine and paroxetine in obsessive-compulsive disorder. J Clin Psychopharmacol. 2003;23:568575 CrossRefGoogle ScholarPubMed
65. Denys, D, van Megen, H, Westenberg, H. The adequacy of pharmacotherapy in outpatients with obsessive-compulsive disorder. Int Clin Psychopharmacol. 2002;17:109114.CrossRefGoogle ScholarPubMed
66. Denys, D, de Geus, F, van Megen, HJ, et al. Use of factor analysis to detect potential phenotypes in obsessive-compulsive disorder. Psychiatry Res. 2004;128:273280.CrossRefGoogle ScholarPubMed
67. Kent, JM, Coplan, JD, Lombardo, I, et al. Occupancy of brain serotonin transporters during treatment with paroxetine in patients with social phobia: a positron emission tomography study with 11C McN 5652. Psychopharmacology (Berl). 2002;164:341348.CrossRefGoogle ScholarPubMed
68. Neumeister, A. Tryptophan depletion, serotonin, and depression: where do we stand? Psychopharmacol Bull. 2003;37:99115.Google ScholarPubMed
69. Berney, A, Sookman, D, Leyton, M, et al. Lack of effects on core obsessive-compulsive symptoms of tryptophan depletion during symptom provocation in remitted obsessive-compulsive disorder patients. Biol Psychiatry. 2006;59:853857.CrossRefGoogle ScholarPubMed
70. El Mansari, M, Blier, P. Mechanisms of action of current and potential pharmacothera-pies of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:362373.CrossRefGoogle ScholarPubMed
71. Dannon, PN, Sasson, Y, Hirschmann, S, et al. Pindolol augmentation in treatment-resistant obsessive compulsive disorder: a double-blind placebo controlled trial. Eur Neuropsychopharmacol. 2000;10:165169.CrossRefGoogle ScholarPubMed
72. Pallanti, S, Quercioli, L, Bruscoli, M. Response acceleration with mirtazapine augmentation of citalopram in obsessive-compulsive disorder patients without comorbid depression: a pilot study. J Clin Psychiatry. 2004;65:13941399 CrossRefGoogle ScholarPubMed
73. Bloch, MH, Landeros-Weisenberger, A, Kelmendi, B, et al. A systematic review: anti-psychotic augmentation with treatment refractory obsessive-compulsive disorder. Mol Psychiatry. 2006;11:622632.CrossRefGoogle Scholar
74. McDougle, CJ, Barr, LC, Goodman, WK, et al. Lack of efficacy of clozapine monotherapy in refractory obsessive-compulsive disorder. Am J Psychiatry. 1995;152:18121814.Google ScholarPubMed
75. Lykouras, L, Alevizos, B, Michalopoulou, P, et al. Obsessive-compulsive symptoms induced by atypical antipsychotics. A review of the reported cases. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:333346.CrossRefGoogle ScholarPubMed
76. McDougle, CJ, Goodman, WK, Price, LH, et al. Neuroleptic addition in fluvoxamine-refractory obsessive-compulsive disorder. Am J Psychiatry. 1990;147:652654.Google ScholarPubMed
77. Shapira, NA, Ward, HE, Mandoki, M, et al. A double-blind, placebo-controlled trial of olanzapine addition in fluoxetine-refractory obsessive-compulsive disorder. Biol Psychiatry. 2004;55:553555.CrossRefGoogle ScholarPubMed
78. Sevincok, L, Topuz, A. Lack of efficacy of low doses of quetiapine addition in refractory obsessive-compulsive disorder. J Clin Psychopharmacol. 2003;23:448450.CrossRefGoogle ScholarPubMed
79. Fineberg, NA, Sivakumaran, T, Roberts, A, et al. Adding quetiapine to SRI in treatment-resistant obsessive-compulsive disorder: a randomized controlled treatment study. Int Clin Psychopharmacol. 2005;20:223226.CrossRefGoogle Scholar
80. Carey, PD, Vythilingum, B, Seedat, S, et al. Quetiapine augmentation of SRIs in treatment refractory obsessive-compulsive disorder: a double-blind, randomised, placebo-controlled study [ISRCTN83050762]. BMC Psychiatry. 2005;5:5.CrossRefGoogle ScholarPubMed
81. Fineberg, NA, Stein, DJ, Premkumar, P, et al. Adjunctive quetiapine for serotonin reuptake inhibitor-resistant obsessive-compulsive disorder: a meta-analysis of randomized controlled treatment trials. Int Clin Psychopharmacol. 2006;21:337343.CrossRefGoogle ScholarPubMed
82. Metin, O, Yazici, K, Tot, S, et al. Amisulpiride augmentation in treatment resistant obsessive-compulsive disorder: an open trial. Hum Psychopharmacol. 2003;18:463467.CrossRefGoogle ScholarPubMed
83. Ramasubbu, R, Ravindran, A, Lapierre, Y. Serotonin and dopamine antagonism in obsessive-compulsive disorder: effect of atypical antipsychotic drugs. PharmacoPsychiatry. 2000;33:236238.CrossRefGoogle ScholarPubMed
84. Kuroki, T, Meltzer, HY, Ichikawa, J. 5-HT2A receptor stimulation by DOI, a 5-HT2A/2c receptor agonist, potentiates amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res. 2003;972:216221.CrossRefGoogle Scholar
85. Zhang, W, Bymaster, FP. The in vivo effects of olanzapine and other antipsychotic agents on receptor occupancy and antagonism of dopamine D1, D2, D3, 5HT2A and muscarinic receptors. Psychopharmacology (Berl). 1999;141:267278,CrossRefGoogle ScholarPubMed
86. Zhang, W, Perry, KW, Wong, DT, et al. Synergistic effects of olanzapine and other antipsychotic agents in combination with fluoxetine on norepinephrine and dopamine release in rat prefrontal cortex. Neuropsychopharmacology. 2000;23:250262.CrossRefGoogle ScholarPubMed
87. Denys, D, Klompmakers, AA, Westenberg, HG. Synergistic dopamine increase in the rat prefrontal cortex with the combination of quetiapine and fluvoxamine. Psychopharmacology (Berl). 2004;176:195203.CrossRefGoogle ScholarPubMed
88. Ryding, E, Lindstrom, M, Bradvik, B, et al. A new model for separation between brain dopamine and serotonin transporters in 123l-beta-CIT SPECT measurements: normal values and sex and age dependence. Eur J Nucl Med Mol Imaging. 2004;31:11141118.CrossRefGoogle ScholarPubMed
89. Pogarell, O, Hamann, C, Popped, G, et al. Elevated brain serotonin transporter availability in patients with obsessive-compulsive disorder. Biol Psychiatry. 2003;54:14061413.CrossRefGoogle ScholarPubMed
90. Hesse, S, Muller, U, Lincke, T, et al. Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder. Psychiatry Res. 2005;140:6372.CrossRefGoogle ScholarPubMed
91. Stengler-Wenzke, K, Muller, U, Angermeyer, MC, et al. Reduced serotonin transporter-availability in obsessive-compulsive disorder (OCD). Eur Arch Psychiatry Clin Neurosci. 2004;254:252255.CrossRefGoogle ScholarPubMed
92. Muller-Vahl, KR, Meyer, GJ, Knapp, WH, et al. Serotonin transporter binding in Tourette Syndrome. Neurosci Lett. 2005;385:120125.CrossRefGoogle ScholarPubMed
93. van der Wee, NJ, Stevens, H, Hardeman, JA, et al. Enhanced dopamine transporter density in psychotropic-naive patients with obsessive-compulsive disorder shown by [123∣]{beta}-CIT SPECT. Am J Psychiatry. 2004;161:22012206.CrossRefGoogle ScholarPubMed
94. Simpson, HB, Lombardo, I, Slifstein, M, et al. Serotonin transporters in obsessive-compulsive disorder: a positron emission tomography study with [(11)C]McN 5652. Biol Psychiatry. 2003;54:14141421.CrossRefGoogle ScholarPubMed
95. Adams, KH, Hansen, ES, Pinborg, LH, et al. Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int J Neuropsychopharmacol. 2005;8:391401.CrossRefGoogle ScholarPubMed
96. Kim, CH, Koo, MS, Cheon, KA, et al. Dopamine transporter density of basal ganglia assessed with [123∣)IPT SPET in obsessive-compulsive disorder. Eur J Nucl Med Mol Imaging. 2003;30:16371643.CrossRefGoogle ScholarPubMed
97. Pogarell, O, Poepperl, G, Mulert, C, et al. SERT and DAT availabilities under citalopram treatment in obsessive-compulsive disorder (OCD). Eur Neuropsychopharmacol. 2005;15:521524.CrossRefGoogle ScholarPubMed
98. Sawle, GV, Hymas, NF, Lees, AJ, et al. Obsessional slowness. Functional studies with positron emission tomography. Brain. 1991:114(Pt 5):21912202.CrossRefGoogle ScholarPubMed
99. Denys, D, van der, WN, Janssen, J, et al. Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol Psychiatry. 2004;55:10411045.CrossRefGoogle ScholarPubMed
100. Denys, D, Van Nieuwerburgh, F, Deforce, D, et al. Association between serotonergic candidate genes and specific phenotypes of obsessive compulsive disorder. J Affect Disord 2006;91:3944.CrossRefGoogle ScholarPubMed
101. Kim, SJ, Lee, HS, Kim, CH. Obsessive-compulsive disorder, factor-analyzed symptom dimensions and serotonin transporter polymorphism. Neuropsychobiology. 2005;52:176182.CrossRefGoogle ScholarPubMed
102. Cavallini, MC, Di Bella, D, Siliprandi, F, et al. Exploratory factor analysis of obsessive-compulsive patients and association with 5-HTTLPR polymorphism. Am J Med Genet. 2002;114:347353.CrossRefGoogle ScholarPubMed
103. Mundo, E, Richter, MA, Zai, G, et al. 5HT1Dbeta Receptor gene implicated in the pathogenesis of obsessive-compulsive disorder: further evidence from a family-based association study. Mol Psychiatry. 2002;7:805809.CrossRefGoogle ScholarPubMed
104. Enoch, MA, Kaye, WH, Rotondo, A, et al. 5-HT2A promoter polymorphism -1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet 1998;351:17851786.CrossRefGoogle ScholarPubMed
105. Walitza, S, Wewetzer, C, Warnke, A, et al. 5-HT2A promoter polymorphism -1438G/A in children and adolescents with obsessive-compulsive disorders. Mol Psychiatry. 2002;7:10541057.CrossRefGoogle ScholarPubMed
106. Camarena, B, Cruz, C de LF Jr., et al. A higher frequency of a low activity-related allele of the MAO-A gene in females with obsessive-compulsive disorder. Psychiatr Genet. 1998;8:255257.CrossRefGoogle ScholarPubMed
107. Frisch, A, Michaelovsky, E, Rockah, R, et al. Association between obsessive-compulsive disorder and polymorphisms of genes encoding components of the serotonergic and dopaminergic pathways. Eur Neuropsychopharmacol. 2000;10:205209.CrossRefGoogle ScholarPubMed
108. Hemmings, SM, Kinnear, CJ, Niehaus, DJ, et al. Investigating the role of dopaminergic and serotonergic candidate genes in obsessive-compulsive disorder. Eur Neuropsychopharmacol. 2000;13:9398.CrossRefGoogle Scholar
109. Nicolini, H, Cruz, C, Camarena, B, et al. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder. Mol Psychiatry. 1996;1:461465.Google ScholarPubMed
110. Catalano, M, Sciuto, G, Di Bella, D, et al. Lack of association between obsessive-compulsive disorder and the dopamine D3 receptor gene: some preliminary considerations. Am J Med Genet. 1994;54:253255.CrossRefGoogle ScholarPubMed
111. Denys, D, Van Nieuwerburgh, F, Deforce, D, et al. Association between the dopamine D2 receptor Taql A2 allele and low activity COMT allele with obsessive-compulsive disorder in males. Eur Neuropsychopharmacol. 2006;16:446450.CrossRefGoogle Scholar
112. Novelli, E, Nobile, M, Diaferia, G, et al. A molecular investigation suggests no relationship between obsessive-compulsive disorder and the dopamine D2 receptor. Neuropsychobiology. 1994;29:6163.CrossRefGoogle ScholarPubMed
113. Billett, EA, Richter, MA, Sam, F, et al. Investigation of dopamine system genes in obsessive-compulsive disorder. Psychiatr Genet 1998;8:163169.CrossRefGoogle ScholarPubMed
114. Cruz, C, Camarena, B, King, N, et al. Increased prevalence of the seven-repeat variant of the dopamine D4 receptor gene in patients with obsessive-compulsive disorder with tics. Neurosci Lett. 1997;231:14.CrossRefGoogle ScholarPubMed
115. Millet, B, Chabane, N, Delorme, R, et al. Association between the dopamine receptor D4 (DRD4) gene and obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet. 2003;116:5559.CrossRefGoogle Scholar
116. Di Bella, D, Catalano, M, Cichon, S, et al. Association study of a null mutation in the dopa-mine D4 receptor gene in Italian patients with obsessive-compulsive disorder, bipolar mood disorder and schizophrenia. Psychiatr Genet. 1996;6:119121.CrossRefGoogle Scholar
117. Karayiorgou, M, Altemus, M, Galke, BL, et al. Genotype determining low catechol-Omethyltransferase activity as a risk factor for obsessive-compulsive disorder. Proc Natl Acad Sci USA. 1997;94:45724575.CrossRefGoogle Scholar
118. Karayiorgou, M, Sobin, C, Blundell, ML, et al. Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. Biol Psychiatry. 1999;45:11781189.CrossRefGoogle ScholarPubMed
119. Alsobrook, JP, Zohar, AH, Leboyer, M, et al. Association between the COMT locus and obsessive-compulsive disorder in females but not males. Am J Med Genet. 2002;114:116120.CrossRefGoogle Scholar
120. Niehaus, DJ, Kinnear, CJ, Corfield, VA, et al. Association between a catechol-o-methyltransferase polymorphism and obsessive-compulsive disorder in the Afrikaner population. J Affect Disord. 2001;65:6165.CrossRefGoogle ScholarPubMed
121. Schindler, KM, Richter, MA, Kennedy, JL, et al. Association between homozygosity at the COMT gene locus and obsessive compulsive disorder. Am J Med Genet. 2000;96:721724.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
122. Ohara, K, Nagai, M, Suzuki, Y, et al. No association between anxiety disorders and catechol-O-methyltransferase polymorphism. Psychiatry Res. 1998;80:145148.CrossRefGoogle ScholarPubMed
123. Erdal, ME, Tot, S, Yazici, K, et al. Lack of association of catechol-O-methyltransferase gene polymorphism in obsessive-compulsive disorder. Depress Anxiety. 2003;18:4145.CrossRefGoogle ScholarPubMed
124. Azzam, A, Mathews, CA. Meta-analysis of the association between the catecholamineO-methyl-transferase gene and obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet. 2003;123:6469.CrossRefGoogle Scholar
125. Kang, DH, Kim, JJ, Choi, JS, et al. Volumetric investigation of the frontal-subcortical circuitry in patients with obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci. 2004;16:342349.CrossRefGoogle ScholarPubMed
126. Szeszko, PR, Robinson, D, Alvir, JM, et al. Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Arch Gen Psychiatry. 1999;56:913919.CrossRefGoogle ScholarPubMed
127. Robinson, D, Wu, H, Munne, RA, et al. Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch Gen Psychiatry. 1995;52:393398.CrossRefGoogle ScholarPubMed
128. Friedlander, L, Desrocher, M. Neuroimaging studies of obsessive-compulsive disorder in adults and children. Clin Psychol Rev. 2006;26:3249.CrossRefGoogle ScholarPubMed
129. Modell, JG, Mountz, JM, Curtis, GC, et al. Neurophysiologic dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a pathogenetic mechanism of obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci. 1989;1:2736.Google ScholarPubMed
130. Aouizerate, B, Guehl, D, Cuny, E, et al. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol. 2004;72:195221.CrossRefGoogle ScholarPubMed
131. Schwartz, JM. Neuroanatomical aspects of cognitive-behavioural therapy response in obsessive-compulsive disorder. An evolving perspective on brain and behaviour. Br J Psychiatry Suppl. 1998;131:3844.CrossRefGoogle Scholar
132. Albin, RL, Young, AB, Penney, JB. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 1995;18:6364.CrossRefGoogle ScholarPubMed
133. Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357381.CrossRefGoogle ScholarPubMed
134. Krawczyk, DC. Contributions of the prefrontal cortex to the neural basis of human decision making. Neurosci Biobehav Rev. 2002;26:631664.CrossRefGoogle Scholar
135. Elliott, R, Dolan, RJ, Frith, CD. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex. 2000; 10:308317.CrossRefGoogle ScholarPubMed
136. Devinsky, O, Morrell, MJ, Vogt, BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(Pt 1):279306.CrossRefGoogle ScholarPubMed
137. Goldman-Rakic, PS. Working memory and the mind. Sci Am. 1992;267:110117.CrossRefGoogle ScholarPubMed
138. Dubois, B, Verin, M, Teixeira-Ferreira, C, et al. Ho to study frontal lobe functions in humans. In: A-M, Thierry, Glowinsky, J, Goldman-Rakic, PS, et al. , eds. Motor and Cognitive Functions of the Prefrontal Cortex. Berlin: Springer-Verlag; 1994:116.Google Scholar
139. Garber, HJ, Ananth, JV, Chiu, LC, et al. Nuclear magnetic resonance study of obsessive-compulsive disorder. Am J Psychiatry. 1989;146:10011005.Google ScholarPubMed
140. Baxter, LR Jr., Schwartz, JM, Mazziotta, JC, et al. Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry. 1988;145:15601563.Google ScholarPubMed
141. Saxena, S, Brody, AL, Schwartz, JM, et al. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl. 1998;35:2637.CrossRefGoogle Scholar
142. Swedo, SE, Schapiro, MB, Grady, CL, et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry. 1989;46:518523.CrossRefGoogle ScholarPubMed
143. Nordahl, TE, Benkelfat, C, Semple, WE, et al. Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology. 1989;2:2328.CrossRefGoogle ScholarPubMed
144. Martinot, JL, Allilaire, JF, Mazoyer, BM, et al. Obsessive-compulsive disorder: a clinical, neuropsychological and positron emission tomography study. Acta Psychiatr Scand. 1990;82:233242.CrossRefGoogle ScholarPubMed
145. Rauch, SL, Jenike, MA, Alpert, NM, et al. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry. 1994;51:6270.CrossRefGoogle ScholarPubMed
146. Breiter, HC, Rauch, SL. Functional MRI and the study of OCD: from symptom provocation to cognitive-behavioral probes of cortico-striatal systems and the amygdala. Neuroimage. 1996;4(suppl):S127–S138.CrossRefGoogle Scholar
147. Sachdev, PS, Malhi, GS. Obsessive-compulsive behaviour: a disorder of decision-making. AustNZJ Psychiatry. 2005;39:757763.Google ScholarPubMed
148. Critchley, HD, Mathias, CJ, Dolan, RJ. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron. 2001;29:537545.CrossRefGoogle ScholarPubMed
149. Rolls, ET. The orbitofrontal cortex and reward. Cereb Cortex. 2000;10:284294.CrossRefGoogle ScholarPubMed
150. Schnider, A, Treyer, V, Buck, A. The human orbitofrontal cortex monitors outcomes even when no reward is at stake. Neuropsychologia. 2005;43:316323.CrossRefGoogle ScholarPubMed
151. Prabhakaran, V, Narayanan, K, Zhao, Z, et al. Integration of diverse information in working memory within the frontal lobe. NatNeurosci. 2000;3:8590.Google ScholarPubMed
152. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol. 2006;57:87115.CrossRefGoogle ScholarPubMed
153. Chamberlain, SR, Blackwell, AD, Fineberg, NA, et al. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci BiobehavBev. 2005;29:399419.CrossRefGoogle ScholarPubMed
154. Chamberlain, SR, Blackwell, AD, Fineberg, NA, et al. Strategy implementation in obsessive-compulsive disorder and trichotillomania. Psychol Med. 2006;36:9197.CrossRefGoogle ScholarPubMed
155. Chamberlain, SR, Fineberg, NA, Menzies, LA, et al. Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of OCD patients: on the trail of endophenotypes. Am J Psychiatry. 2007. In press.CrossRefGoogle Scholar
155. Cavedini, P, Riboldi, G, D'Annucci, A, et al. Decision-making heterogeneity in obsessive-compulsive disorder: ventromedial prefrontal cortex function predicts different treatment outcomes. Neuropsychologia. 2002;40:205211.CrossRefGoogle ScholarPubMed
156. Cavallaro, R, Cavedini, P, Mistretta, P, et al. Basal-corticofrontal circuits in schizophrenia and obsessive-compulsive disorder: a controlled, double dissociation study. Biol Psychiatry. 2003;54:437443.CrossRefGoogle ScholarPubMed
157. Nielen, MM, den Boer, JA. Neuropsychological performance of OCD patients before and after treatment with fluoxetine: evidence for persistent cognitive deficits. Psychol Med. 2003;33:917925.CrossRefGoogle ScholarPubMed
158. Watkins, LH, Sahakian, BJ, Robertson, MM, et al. Executive function in Tourette's syndrome and obsessive-compulsive disorder. Psychol Med. 2005;35:571582.CrossRefGoogle ScholarPubMed
159. Lawrence, NS, Wooderson, S, Mataix-Cols, D, et al. Decision making and set shifting impairments are associated with distinct symptom dimensions in obsessive-compulsive disorder. Neuropsychology. 2006;20:409419.CrossRefGoogle ScholarPubMed
160. Remijnse, PL, Nielen, MM, van Balkom, AJ, et al. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry. 2006;63:12251236.CrossRefGoogle ScholarPubMed
161. Cavedini, P, Riboldi, G, Keller, R, et al. Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry. 2002;51:334341.CrossRefGoogle ScholarPubMed
162. Cavedini, P, Zorzi, C, Bassi, T, et al. Decision-making functioning as a predictor of treatment outcome in anorexia nervosa. Psychiatry Res. 2006:7(145 suppl 2-3):179187.CrossRefGoogle Scholar
163. Cavedini, P, Bassi, T, Zorzi, C, et al. The advantages of choosing antiobsessive therapy according to decision-making functioning. J Clin Psychopharmacol. 2004;24:628631.CrossRefGoogle ScholarPubMed
164. Fontenelle, L, Marques, C, Engelhardt, E, et al. Impaired set-shifting ability and therapeutic response in obsessive-compulsive disorder. J Neumpsychiatry Clin Neurosci. 2001;13:508510.CrossRefGoogle ScholarPubMed
165. Moritz, S, Kloss, M, Jacobsen, D, et al. Neurocognitive impairment does not predict treatment outcome in obsessive-compulsive disorder. Behav Res Ther. 2005;43:811819.CrossRefGoogle Scholar
166. Bolton, D, Raven, P, Madronal-Luque, R, et al. Neurological and neuropsychological signs in obsessive compulsive disorder: interaction with behavioural treatment. Behav Res Ther. 2000;38:695708.CrossRefGoogle ScholarPubMed
167. Abbruzzese, M, Ferri, S, Scarone, S. Wisconsin Card Sorting Test performance in obsessive-compulsive disorder: no evidence for involvement of dorsolateral prefrontal cortex. Psychiatry Res. 1995;58:3743.CrossRefGoogle ScholarPubMed
168. Mataix-Cols, D, Alonso, P, Pifarre, J, et al. Neuropsychological performance in medicated vs. unmedicated patients with obsessive-compulsive disorder. Psychiatry Res. 2002;109:255264.CrossRefGoogle ScholarPubMed
169. Chamberlain, SR, Fineberg, NA, Blackwell, AD, et al. Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. Am J Psychiatry. 2006;163:12821284.CrossRefGoogle ScholarPubMed
170. Watkins, LH, Rogers, RD, Lawrence, AD, et al. Impaired planning but intact decision making in early Huntington's disease: implications for specific fronto-striatal pathology. Neuropsychologia. 2000;38:11121125.CrossRefGoogle ScholarPubMed
171. Fiorillo, CD, Tobler, PN, Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003;299:18981902.CrossRefGoogle ScholarPubMed
172. Horvitz, JC. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience. 2000;96:651656.CrossRefGoogle ScholarPubMed
173. Kapur, S, Remington, G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry. 1996;153:466476.Google ScholarPubMed
174. Amargos-Bosch, M, Bortolozzi, A, Puig, MV, et al. Co-expression and in vivo interaction of serotonin 1A and serotonin 2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex. 2004;14:281299.CrossRefGoogle ScholarPubMed
175. Seeman, P. Atypical antipsychotics: mechanism of action. Can J Psychiatry. 2002;47:2738.CrossRefGoogle ScholarPubMed
176. Marek, GJ, Carpenter, LL, McDougle, CJ, et al. Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology. 2003;28:402412.CrossRefGoogle ScholarPubMed
177. Bortolozzi, A, Diaz-Mataix, L, Scorza, MC, et al. The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem. 2005;95:15971607.CrossRefGoogle ScholarPubMed
178. Ichikawa, J, Ishii, H, Bonaccorso, S, et al. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem. 2001;76:15211531.CrossRefGoogle Scholar
179. Hallbus, M, Magnusson, T, Magnusson, O. Influence of 5-HT1B/1D receptors on dopa-mine release in the guinea pig nucleus accumbens: a microdialysis study. Neurosci Lett 1997;225:5760.CrossRefGoogle Scholar
180. O'Dell, LE, Parsons, LH. Serotonin 1B receptors in the ventral tegmental area modulate cocaine-induced increases in nucleus accumbens dopamine levels. J Pharmacol Exp Ther. 2004;311:711719.CrossRefGoogle ScholarPubMed
181. Neumaier, JF, Vincow, ES, Arvanitogiannis, A, et al. Elevated expression of 5-HT1B receptors in nucleus accumbens efferents sensitizes animals to cocaine. J Neurosci. 2002;22:1085610863.CrossRefGoogle ScholarPubMed
182. De Deurwaerdere, P, Navailles, S, Berg, KA, et al. Constitutive activity of the serotonin 2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci. 2004;24:32353241.CrossRefGoogle ScholarPubMed
183. Zhou, FC, Lesch, KP, Murphy, DL. Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res. 2002;942:109119.CrossRefGoogle ScholarPubMed
184. Zhou, FM, Liang, Y, Salas, R, et al. Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron. 2005;46:6574.CrossRefGoogle ScholarPubMed
185. Potenza, MN. The neurobiology of pathological gambling. Semin Clin Neumpsychiatry. 2001;6:217226.CrossRefGoogle ScholarPubMed
186. Rosenkranz, JA, Grace, AA. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature. 2002;417:282287.CrossRefGoogle ScholarPubMed
187. Holden, C. ‘Behavioral’ addictions: do they exist? Science. 2001;294:980982.CrossRefGoogle ScholarPubMed
188. Manes, F, Sahakian, B, Clark, L, et al. Decision-making processes following damage to the prefrontal cortex. Brain. 2002;125:624639.CrossRefGoogle ScholarPubMed
189. van V, V, Carter, CS. The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav. 2002;77:477482.CrossRefGoogle Scholar
190. Fitzgerald, KD, Welsh, RC, Gehring, WJ, et al. Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol Psychiatry. 2005;57:287294.CrossRefGoogle ScholarPubMed
191. Hajcak, G, Simons, RF. Error-related brain activity in obsessive-compulsive undergraduates. Psychiatry Res. 2002;110:6372.CrossRefGoogle ScholarPubMed
192. Jung, HH, Kim, CH, Chang, JH, et al. Bilateral anterior cingulotomy for refractory obsessive-compulsive disorder: Long-term follow-up results. Stereotact Fund Neurosurg. 2006;84:184189.CrossRefGoogle ScholarPubMed
193. Kim, CH, Chang, JW, Koo, MS, et al. Anterior cingulotomy for refractory obsessive-compulsive disorder. Acta Psychiatr Scand. 2003;107:283290.CrossRefGoogle ScholarPubMed
194. Nieuwenhuis, S, Ridderinkhof, KR, Talsma, D, et al. A computational account of altered error processing in older age: dopamine and the error-related negativity. Cogn Affect Behav Neurosci. 2002;2:1936.CrossRefGoogle ScholarPubMed
195. Talbot, PS, Watson, DR, Barrett, SL, et al. Rapid tryptophan depletion improves decision-making cognition in healthy humans without affecting reversal learning or set shifting. Neuropsychopharmacology. 2006;31:15191525.CrossRefGoogle ScholarPubMed
196. Rogers, RD, Tunbridge, EM, Bhagwagar, Z, et al. Tryptophan depletion alters the decision-making of healthy volunteers through altered processing of reward cues. Neuropsychopharmacology. 2003;28:153162.CrossRefGoogle ScholarPubMed
197. Pessiglione, M, Czernecki, V, Pillon, B, et al. An effect of dopamine depletion on decision-making: the temporal coupling of deliberation and execution. J Cogn Neurosci. 2005;17:18861896.CrossRefGoogle ScholarPubMed