Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T13:03:05.577Z Has data issue: false hasContentIssue false

XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals

Published online by Cambridge University Press:  01 January 2024

Paola Castaldi*
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
Margherita Silvetti
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
Laura Santona
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
Stefano Enzo
Affiliation:
Dipartimento di Chimica, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
Pietro Melis
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present work shows the results of X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermal analysis of untreated (RMnt) and acid-treated red mud (RMa), a bauxite ore-processing waste, exchanged with Pb2+, Cd2+, and Zn2+ cations. These studies were performed in order to investigate the changes in the sorbent structure caused by the exchange with metals of different ionic radii.

The XRD pattern of RMnt, analyzed according to the Rietveld method, showed a mixture of eight different phases. However, just three phases made up 78 wt.% of the RMnt: cancrinite (33 wt.%), hematite (29 wt.%), and sodalite (16 wt.%). X-ray diffraction patterns of RMnt exchanged with Pb2+ and Cd2+ cations revealed two additional phases, namely hydrocerussite [Pb3(CO3)2(OH)2 (10 wt.%))] and octavite [CdCO3 (8 wt.%)].

These two phases probably originated from the carbonate precipitation processes which were due to the decarbonation of cancrinite. Hydrocerussite and octavite were not found in the case of acid-treated red mud samples.

In the FTIR spectra, the introduction of cations caused a distinct shift to higher wavenumbers in the peak at ∼1100 cm−1, which is attributed to the asymmetric stretch of Si-O-Al. This effect may be associated with the Pb2+, Cd2+, and Zn2+ adsorbed by the red muds which caused a deformation of the initial structure.

Thermal analysis data of the red mud samples were obtained by thermogravimetric/differential thermogravimetric analysis, and these methods were employed to evaluate the desorption behavior of water and to clarify the thermal stability of the chemical phases of the different red mud samples. The loss of metal-bound water in the red mud samples was found to depend on the size of non-framework cations and water loss consistently followed the order: Zn2+>Cd2+>Pb2+.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Apak, R. Tutem, E. Hugul, M. and Hizal, J., 1998 Heavy metal cation retention by unconventional sorbents (red mud and fly ashes) Water Research> 32 430440 10.1016/S0043-1354(97)00204-2.CrossRefGoogle Scholar
Apak, R. Güçlü, K. and Turgut, M.H., 1998 Modeling of copper(II), cadmium(II) and lead(II) adsorption on red mud Journal of Colloid and Interface Science> 203 122130 10.1006/jcis.1998.5457.CrossRefGoogle Scholar
Armstrong, J.A. and Dann, S.E., 2000 Investigation of zeolite scales formed in the Bayer process Microporous and Mesoporous Materials> 41 8997 10.1016/S1387-1811(00)00276-6.CrossRefGoogle Scholar
Barnes, M.C. Addai-Mensah, J. and Gerson, A.R., 1999 A methodology for quantifying sodalite and cancrinite phase mixtures and kinetics of the sodalite to cancrinite phase transformation Microporous and Mesoporous Materials> 31 303319 10.1016/S1387-1811(99)00080-3.CrossRefGoogle Scholar
Barrer, R.M. Cole, J.F. and Villiger, H., 1970 Chemistry of soil minerals. Part VII. Synthesis, properties, and crystal structures of salt-filled cancrinite Journal of the Chemical Society> A3 15231531 10.1039/j19700001523.CrossRefGoogle Scholar
Brunori, C. Cremisini, C. Massanisso, P. Pinto, V. and Torricelli, L., 2005 Reuse of treated red mud bauxite waste: studies on environmental compatibility Journal of Hazardous Materials> 117 5563 10.1016/j.jhazmat.2004.09.010.CrossRefGoogle ScholarPubMed
Castaldi, P. Santona, L. Cozza, C. Giuliano, V. Abruzzese, C. Nastro, V. and Melis, P., 2005 Thermal and spectroscopic studies of zeolites exchanged with metal cations Journal of Molecular Structure> 734 99105 10.1016/j.molstruc.2004.09.009.CrossRefGoogle Scholar
Celi, L. De Luca, G. and Barberis, E., 2003 Effects of interaction of organic and inorganic P with ferrihydrite and kaolinite-iron oxide systems on iron release Soil Science> 168 479488.CrossRefGoogle Scholar
Fuhrman, H.G. (2004) Arsenic removal from water using seawater-neutralised red mud (Bauxsol). PhD thesis, Environment & Resources DTU Technical University of Denmark.Google Scholar
Gök, A. Omastová, M. and Proke, J., 2007 Synthesis and characterization of red mud/polyaniline composites: Electrical properties and thermal stability European Polymer Journal> 43 24712480 10.1016/j.eurpolymj.2007.03.005.CrossRefGoogle Scholar
Gupta, V.K. and Sharma, S., 2002 Removal of cadmium and zinc from aqueous solutions using red mud Environmental Science and Technology> 36 36123617 10.1021/es020010v.CrossRefGoogle ScholarPubMed
Hackbarth, K. Gesing, T.M. Fechtelkord, M. Stief, F. and Buhl, J-Ch, 1999 Synthesis and crystal structure of carbonate cancrinite Na8[AlSiO4]6CO3(H2O)3.4, grown under low-temperature hydrothermal conditions Microporous and Mesoporous Materials> 30 347358 10.1016/S1387-1811(99)00046-3.CrossRefGoogle Scholar
Hind, A.R. Bhargava, S.K. and Grocott, S.C., 1999 The surface chemistry of Bayer process solids: a review Colloids and Surfaces A, Physicochemical and Engineering Aspects> 146 359374 10.1016/S0927-7757(98)00798-5.CrossRefGoogle Scholar
Joshi, U.D. Joshi, P.N. Tamhankar, S.S. Joshi, V.P. Idage, B.B. Joshi, V.V. and Shiraljar, V.P., 2002 Influence of the size of extraframework monovalent cations in X-type zeolite on their thermal behavior Thermochimica Acta> 387 121130 10.1016/S0040-6031(01)00840-1.CrossRefGoogle Scholar
Komnitsas, K. Bartzas, G. and Paspaliaris, I., 2004 Efficiency of limestone and red mud barriers: laboratory column studies Minerals Engineering> 17 183194 10.1016/j.mineng.2003.11.006.CrossRefGoogle Scholar
Linares, C.F. Sánchez, S. de Urbina Navarro, C. Rodríguez, K. and Goldwasser, M.R., 2005 Study of cancrinite-type zeolites as possible antiacid agents Microporous and Mesoporous Materials> 77 215221 10.1016/j.micromeso.2004.08.030.CrossRefGoogle Scholar
Lopez, E. Soto, B. Arias, M. Nunez, A. Rubinos, D. and Barrai, M.T., 1998 Adsorbent properties of red mud and its use for wastewater treatment Water Research> 32 13141322 10.1016/S0043-1354(97)00326-6.CrossRefGoogle Scholar
Lutterotti, L. and Gialanella, S., 1998 X-ray diffraction characterization of heavily deformed metallic specimens Acta Materialia> 46 101110 10.1016/S1359-6454(97)00222-X.CrossRefGoogle Scholar
Martinetto, P. Anne, M. Dooryhée, E. Walter, P. and Tsoucaris, G., 2002 Synthetic hydrocerussite, 2PbCO3Pb(OH)2, by X-ray power diffraction Acta Crystallographica Section A> C58 i82i84.Google Scholar
Mon, J. Deng, Y. Flury, M. and Harsh, J.B., 2005 Cesium incorporation and diffusion in cancrinite, sodalite, zeolite and allophone Microporous and Mesoporous Materials> 86 277286 10.1016/j.micromeso.2005.07.030.CrossRefGoogle Scholar
Mozgawa, W. Sitarz, M. and Rokita, M., 1999 Spectroscopic studies of different aluminosilicate structures Journal of Molecular Structure> 511 251257 10.1016/S0022-2860(99)00165-9.CrossRefGoogle Scholar
Mozgawa, W. Fojud, Z. Handke, M. and Jurga, S., 2002 MAS NMR and FTIR spectra of framework aluminosilicates Journal of Molecular Structure> 614 281287 10.1016/S0022-2860(02)00262-4.CrossRefGoogle Scholar
Official Methods, No III. 1 Ordinary Suppl. Italian G.U. No. 248 of 21/10/1999.Google Scholar
Paramguru, R.K. Rath, P.C. and Misra, V.N., 2005 Trends in red mud utilization — a review Mineral Processing and Extractive Metallurgy Review> 26 129 10.1080/08827500490477603.CrossRefGoogle Scholar
Phillips, I.R., 1998 Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability Journal of Soil Contamination> 7 191212 10.1080/10588339891334221.CrossRefGoogle Scholar
Pontikes, Y. Nikolopoulos, P. and Angelopoulos, G.N., 2007 Thermal behaviour of clay mixtures with bauxite residue for the production of heavy-clay ceramics Journal of the European Ceramic Society> 27 16451649 10.1016/j.jeurceramsoc.2006.05.067.CrossRefGoogle Scholar
Pradhan, J. Das, S.N. and Thakur, R.S., 1999 Adsorption of hexavalent chromium from aqueous solution by using activated red mud Journal of Colloid and Interface Science> 217 137141 10.1006/jcis.1999.6288.CrossRefGoogle ScholarPubMed
Ruan, H.D. Frost, R.L. and Kloprogge, J.T., 2001 The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite Spectrochimica Acta, Part A> 57 25752586 10.1016/S1386-1425(01)00445-0.CrossRefGoogle ScholarPubMed
Santona, L. Castaldi, P. and Melis, P., 2006 Evaluation of the interaction mechanisms between red muds and heavy metals Journal of Hazardous Materials> 136 324329 10.1016/j.jhazmat.2005.12.022.CrossRefGoogle ScholarPubMed
Sglavo, V.M. Campostrini, R. Maurina, S. Carturan, G. Monagheddu, M. Budroni, G. and Cocco, G., 2000 Bauxite red mud in the ceramic industry. Part 1: thermal behaviour Journal of the European Ceramic Society> 20 235244 10.1016/S0955-2219(99)00088-6.CrossRefGoogle Scholar
Summer, R.N. Smirk, D.D. and Karafilis, D., 1996 Phosphorus retention and leachates from sandy soil amended with bauxite residue (red mud) Australian Journal of Soil Research> 34 555567 10.1071/SR9960555.CrossRefGoogle Scholar
Whittington, B.I. Fletcher, B.L. and Talbot, C., 1998 The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions Hydrometallurgy> 49 122 10.1016/S0304-386X(98)00021-8.CrossRefGoogle Scholar
Young, R.A., 1993 The Rietveld Method Oxford, UK Oxford University Press.CrossRefGoogle Scholar
Zhao, H.T. Deng, Y.J. Harsh, J.B. Flury, M. and Boyle, J.S., 2004 Alteration of kaolinite to cancrinite and sodalite by simulated Hanford tank waste and its impact on cesium retention Clays and Clay Minerals> 52 113 10.1346/CCMN.2004.0520101.CrossRefGoogle Scholar
Zheng, K. Gerson, A.R. Addai-Mensha, J. and Smart, R., 1997 The influence of sodium aluminosilicate crystallisation and solubility in sodium aluminate solutions Journal of Crystal Growth> 171 197208 10.1016/S0022-0248(96)00480-0.CrossRefGoogle Scholar