Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T12:18:56.406Z Has data issue: false hasContentIssue false

X-Ray diffraction line-broadening study on two vibrating, dry-milling procedures in kaolinites

Published online by Cambridge University Press:  01 January 2024

Pablo Pardo*
Affiliation:
Departamento de Geología, Universidad de Valencia, 46100 Burjasot, Valencia, Spain Instituto de Ciencia de Materiales, Universidad de Valencia, P.O. 22085 46071 Valencia, Spain
Joaquín Bastida
Affiliation:
Departamento de Geología, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
Francisco J. Serrano
Affiliation:
Departamento de Geología, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
Rafael Ibáñez
Affiliation:
Instituto de Ciencia de Materiales, Universidad de Valencia, P.O. 22085 46071 Valencia, Spain
Marek A. Kojdecki
Affiliation:
Instytut Matematyki i Kryptologii, Wojskowa Akademia Techniczna, 00-908 Warszawa, Poland
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to the great technological importance of the microstructure of kaolinite, characterizing its evolution during dry milling of kaolin and analyzing the microstructural information obtained from different methods were the main aims of this work. The microstructural alteration of kaolinite is evaluated by X-ray diffraction and electron microscopy methods, comparing the results obtained and analyzing the correlations between them. The Warren-Averbach and Voigt-function methods of X-ray diffraction microstructural analysis have been applied successfully to the study of the effects of two different, vibrating-cup dry-milling configurations in the microstructure of kaolinite from the reflections corresponding to (001) diffracting planes. The crystallite-size estimates obtained from the two methods correlate well. Field emission scanning electron microscopy measurements of kaolinite particle thickness are in good agreement with the crystallite size estimated by the two methods. The Warren-Averbach method also provided estimates of the contribution to line broadening. Vibrating-cup milling has been proved to be a more efficient method of strain comminution of kaolinites than other milling techniques, reaching extensive microstructural degradation within seconds.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Balzar, D. and Ledbetter, H., 1993 Voigt-Function modelling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks Journal of Applied Crystallography 26 97103 10.1107/S0021889892008987.CrossRefGoogle Scholar
Bastida, J. Kojdecki, M.A. Pardo, P. and Amorós, P., 2006 X-ray diffraction line broadening on vibrating dry-milled two crows sepiolite Clays and Clay Minerals 54 390401 10.1346/CCMN.2006.0540310.CrossRefGoogle Scholar
Baudet, G. Perrotel, V. Seron, A. and Stellatelli, M., 1999 Two dimensions comminution of kaolinite clay particles Powder Technology 105 125134 10.1016/S0032-5910(99)00127-8.CrossRefGoogle Scholar
Bertaut, E.F., 1950 Raies de Debye-Scherrer et Repartition des Dimensions des Domaines de Bragg Dans les Poudres Polycristallines Acta Crystallographica 3 1418 10.1107/S0365110X50000045.CrossRefGoogle Scholar
Bish, D.L., 1993 Rietveld refinement of the kaolinite structure at 1.5 K Clays and Clay Minerals 41 738744 10.1346/CCMN.1993.0410613.CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L., 2001 Baseline studies of The Clay Minerals Society Source Clays: Powder X-ray diffraction analyses Clays and Clay Minerals 49 398409 10.1346/CCMN.2001.0490507.CrossRefGoogle Scholar
Clausell, J.V., 2001 Análisis microestructural de caolinita y génesis de caolines en el Macizo Ibérico Cadernos Laboratorio Xeoloxico Laxe 26 1199.Google Scholar
Clausell, J.V. Bastida, J. Serrano, F.J. Pardo, P. and Huertas, F.J., 2007 A new FESEM procedure for assessment of XRD microstructural data of kaolinites Applied Clay Science 37 127132 10.1016/j.clay.2006.11.009.CrossRefGoogle Scholar
De Keijser, T.h.H. Mittemeijer, E.J. and Rozendaal, H.C.F., 1983 The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures Journal of Applied Crystallography 16 309316 10.1107/S0021889883010493.CrossRefGoogle Scholar
Eberl, D.D. Drits, V.A. and Środoń, J., 1998 Deducing growth mechanisms for minerals from the shapes of crystal size distributions American Journal of Science 298 499533 10.2475/ajs.298.6.499.CrossRefGoogle Scholar
Frost, R.L. Makó, E. Kristóf, J. Horvath, E. and Kloprogge, J.T., 2001 Modification of kaolinite surfaces by mechanochemical treatment Langmuir 17 47314738 10.1021/la001453k.CrossRefGoogle Scholar
Frost, R.L. Makó, E. Kristóf, J. and Kloprogge, J.T., 2002 Modification of kaolinite surfaces through mechanochemical treatment — A mid-IR and near-IR spectroscopic study Spectrochimica Acta — Part A Molecular and Biomolecular Spectroscopy 58 28492859 10.1016/S1386-1425(02)00033-1.CrossRefGoogle ScholarPubMed
Frost, R.L. Horvath, E. Makó, E. and Kristóf, J., 2004 Modification of low- and high-defect kaolinite surfaces: implications for kaolinite mineral processing Journal of Colloid and Interface Science 270 337346 10.1016/j.jcis.2003.10.034.CrossRefGoogle ScholarPubMed
González-García, F. Ruiz Abrio, M.T. and González Rodríguez, M., 1991 Effects of dry grinding on two kaolins of different degrees of crystallinity Clay Minerals 26 549565 10.1180/claymin.1991.026.4.09.CrossRefGoogle Scholar
Harben, P.W., and Bates, R.L. (1990) Industrial minerals. Geology and world deposits. Metal Bulletin PLC. London, 311 pp.Google Scholar
Klug, H.P. and Alexander, L.E., 1974 X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York John Wiley & Sons 965 pp.Google Scholar
Konta, J., 1995 Clay and Man — Clay raw-materials in the service of man Applied Clay Science 10 275335 10.1016/0169-1317(95)00029-4.CrossRefGoogle Scholar
Kristóf, E. Juhasz, A.Z. and Vassanyi, I., 1993 The effect of mechanical treatment on the crystal-structure and thermal-behavior of kaolinite Clays and Clay Minerals 41 608612 10.1346/CCMN.1993.0410511.CrossRefGoogle Scholar
Langford, J.I., 1978 Rapid method for analyzing breadths of diffraction and spectral-lines using Voigt function Journal of Applied Crystallography 11 1014 10.1107/S0021889878012601.CrossRefGoogle Scholar
Langford, J.I., Prince, E. and Stalick, J.K., 1992 The use of the Voigt function in determining micro structural properties from diffraction data by means of pattern decomposition Accuracy in Powder Diffraction II Boulder, Colorado, USA National Institute of Standards and Technology 110126 Special Publication.Google Scholar
Makó, E. Frost, R.L. Kristóf, J. and Horvath, E., 2001 The effect of quartz content on the mechanochemical activation of kaolinite Journal of Colloid and Interface Science 244 359364 10.1006/jcis.2001.7953.CrossRefGoogle Scholar
Marchese, J. Almandoz, C. Amaral, M. Palacio, L. Calvo, J.I. Pradanos, P. and Hernandez, A., 2000 Fabrication and characterization of microfiltration tubular ceramic membranes Boletin de la Sociedad Española de Ceramica y Vidrio 39 215219 10.3989/cyv.2000.v39.i2.869.CrossRefGoogle Scholar
Mermut, A.R. and Cano, A.F., 2001 Baseline studies of The Clay Minerals Society Source Clays: Chemical analyses of major elements Clays and Clay Minerals 49 381386 10.1346/CCMN.2001.0490504.CrossRefGoogle Scholar
Murray, H.H. Bundy, W.M. and Harvey, C.C., 1993 Kaolin Genesis and Utilization Bloomington, Indiana, USA The Clay Minerals Society 341 pp.CrossRefGoogle Scholar
Olivier, J.P. and Sennett, P., 1973 Particle size-shape relationships in Georgia sedimentary kaolins II Clays and Clay Minerals 21 403412 10.1346/CCMN.1973.0210516.CrossRefGoogle Scholar
Pardo, P. Bastida, J. Kojdecki, M.A. Ibáñez, R. and Zbik, M., 2007 X-ray diffraction line broadening in dry grinding of kaolinite Zeitschrift für Kristallographie Supplement 26 549554 10.1524/zksu.2007.2007.suppl_26.549.CrossRefGoogle Scholar
Pruett, R.J. and Webb, H.L., 1993 Sampling and analysis of KGa-1B well-crystallized kaolin source clay Clays and Clay Minerals 41 514519 10.1346/CCMN.1993.0410411.CrossRefGoogle Scholar
Sanchez-Soto, P.J. de Haro, M.D.J. Perez-Maqueda, L.A. Varona, I. and Perez-Rodriguez, J.L., 2000 Effects of dry grinding on the structural changes of kaolinite powders Journal of the American Ceramic Society 83 16491657 10.1111/j.1151-2916.2000.tb01444.x.CrossRefGoogle Scholar
Serrano, F.J. Bastida, J. Amigó, J.M. and Sanz, A., 1996 XRD line broadening studies on mullite Crystal Research and Technology 31 10851093 10.1002/crat.2170310818.CrossRefGoogle Scholar
Vogt, C. Lauterjung, J. and Fischer, R.X., 2002 Investigation of the clay fraction (<2 µm) of the Clay Minerals Society reference clays Clays and Clay Minerals 50 388400 10.1346/000986002760833765.CrossRefGoogle Scholar
Warren, B.E. and Averbach, B.L., 1950 The effect of cold-work distortion on X-ray patterns Journal of Applied Physics 21 595599 10.1063/1.1699713.CrossRefGoogle Scholar
Warren, B.E., 1955 A generalized treatment of cold work in powder patterns Acta Crystaliographica 8 483486 10.1107/S0365110X55001503.CrossRefGoogle Scholar
Zbik, M. and Smart, R.S., 1998 Nanomorphology of kaolinites: Comparative SEM and AFM studies Clays and Clay Minerals 46 153160 10.1346/CCMN.1998.0460205.CrossRefGoogle Scholar