Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T17:33:08.908Z Has data issue: false hasContentIssue false

Water retention of two natural compacted bentonites

Published online by Cambridge University Press:  01 January 2024

M. V. Villar*
Affiliation:
CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avd. Complutense 22, 28040 Madrid, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work presents the water retention curves obtained for two natural bentonites compacted at different dry densities. The density of the bentonite was kept constant during the determination, for which specific methodologies were developed. The materials tested are the FEBEX and the MX-80 bentonites, in the first of which divalent cations (Ca and Mg) predominate in the exchange complex; MX-80 is mainly sodic. The water retention capacity of the FEBEX bentonite is greater, although the difference between both bentonites becomes smaller towards low suctions. The effect of dry density on the water retention curve is very small or imperceptible for suctions >10 MPa, and below this value the lower the density of the bentonite, the greater its water content. The basal spacing of the samples equilibrated at different suctions has been measured and found to be in the order of those measured by other authors in powder samples equilibrated to the same suctions. The study was performed in the framework of projects concerning the engineered bentonite barrier of high-level radioactive waste repositories.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Al-Mukhtar, M. Qi, Y. Alcocer, J.-F. and Bergaya, F., (1999) Oedometric and water-retention behavior of highly compacted unsaturated smectites Canadian Geotechnical Journal 36 675684 10.1139/t99-035.CrossRefGoogle Scholar
Bérend, I. Cases, J.-M. François, M. Uriot, J.-P. Michot, L. Masion, A. and Thomas, F., (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms Clays and Clay Minerals 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Caballero, E., Jiménez de Cisneros, C. and Linares, J. (2004) Physicochemical properties of bentonite: effect of the exchangeable cations. Pp. 4047 in: FEBEX II Project. THG laboratory experiments (Missana, T., editor). Publicación Técnica ENRESA 09/2004, Madrid.Google Scholar
Cases, J.M. Bérend, I. Besson, G. François, M. Uriot, J.P. Thomas, F. and Poirier, J.E., (1992) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form Langmuir 8 27302739 10.1021/la00047a025.CrossRefGoogle Scholar
Cases, J.M. Bérend, I. Besson, G. François, M. Uriot, J.P. Michot, L. and Thomas, F., (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms Clays and Clay Minerals 45 822 10.1346/CCMN.1997.0450102.CrossRefGoogle Scholar
Cuadros, J. Huertas, F. Delgado, A. and Linares, J., (1994) Determination of hydration (H2O) and structural (H2O+) water for chemical analysis of smectites. Application to Los Trancos smectites, Spain Clay Minerals 29 297300 10.1180/claymin.1994.029.2.16.CrossRefGoogle Scholar
Devineau, K. Bihannic, I. Michot, L. Villiéras, F. Masrouri, F. Cuisinier, O. Fragneto, G. and Michau, N., (2006) In situ neutron diffraction analysis of the influence of geometric confinement on crystalline swelling of montmorillonite Applied Clay Science 31 7684 10.1016/j.clay.2005.08.006.CrossRefGoogle Scholar
Dontsova, K.M. Norton, L.D. Johnston, C.T. and Bigham, J., (2004) Influence of exchangeable cations on water adsorption by soil clays Soil Science Society of America Journal 68 12181227 10.2136/sssaj2004.1218.CrossRefGoogle Scholar
ENRESA (1995) Almacenamiento geológico profundo de residuos radiactivos de alta actividad (AGP). Diseños conceptuales genéricos. Publicación Técnica ENRESA 11/95, Madrid, 105 pp.Google Scholar
ENRESA (1998) FEBEX. Bentonite: origin, properties and fabrication of blocks. Publicación Técnica ENRESA 4/98, Madrid, 146 pp.Google Scholar
ENRESA (2000) FEBEX Project. Full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock. Final Report. Publicación Técnica ENRESA 1/2000, Madrid, 354 pp.Google Scholar
Fernández, A.M., (2003) Caracterización y modelización del agua intersticial en materiales arcillosos: Estudio de la bentonita de Cortijo de Archidona Madrid Universidad Autónoma de Madrid 505 pp.Google Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties American Mineralogist 90 13581374 10.2138/am.2005.1776.CrossRefGoogle Scholar
Gens, A. Guimaraes, L.d.N. Garcia-Molina, A. and Alonso, E.E., (2002) Factors controlling rock-clay buffer interaction in a radioactive waste repository Engineering Geology 64 297308 10.1016/S0013-7952(02)00026-1.CrossRefGoogle Scholar
Hall, P.L. and Astill, D.M., (1989) Adsorption of water by homoionic exchange forms of Wyoming montmorillonite (SWy-1) Clays and Clay Minerals 37 355363 10.1346/CCMN.1989.0370409.CrossRefGoogle Scholar
Iwasaki, T. and Watanabe, T., (1988) Distribution of Ca and Na ions in dioctahedral smectites and interstratified dioctahedral mica/smectites Clays and Clay Minerals 36 7382 10.1346/CCMN.1988.0360110.CrossRefGoogle Scholar
Lloret, A., Romero, E. and Villar, M.V. (2004) FEBEX II Project. Final report on thermo-hydro-mechanical laboratory tests. Publicación Técnica ENRESA 10/04, Madrid, 180 pp.Google Scholar
Madsen, F.T., (1998) Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129 10.1180/000985598545318.CrossRefGoogle Scholar
Marcial, D., (2003) Comportement hydromécanique et microstructural des matériaux de barrière ouvragée Paris École Nationale des Ponts et Chausées 316 pp.Google Scholar
Ng, C.W.W. and Pang, Y.W., (2000) Influence of stress state on soil-water characteristics and slope stability Journal of Geotechnical and Geoenvironmental Engineering 126 157166 10.1061/(ASCE)1090-0241(2000)126:2(157).CrossRefGoogle Scholar
Ormerod, E.C. and Newman, A.C.D., (1983) Water sorption on Ca-saturated clays: II. Internal and external surfaces of montmorillonite Clay Minerals 18 289299 10.1180/claymin.1983.018.3.06.CrossRefGoogle Scholar
Pusch, R., (1994) Waste Disposal in Rock Amsterdam Elsevier 490 pp.Google Scholar
Romero, E. Vaunat, J., Tarantino, A. and Mancuso, C., (2000) Retention curves of deformable clays Experimental Evidences and Theoretical Approaches in Unsaturated Soils Rotterdam, The Netherlands Balkema 91106.Google Scholar
Saiyouri, N. Tessier, D. and Hicher, P.Y., (2004) Experimental study of swelling in unsaturated compacted clays Clay Minerals 39 469479 10.1180/0009855043940148.CrossRefGoogle Scholar
Sauzéat, E. Guillaume, D. Neaman, A. Dubessy, J. François, M. Pfeiffert, C. Pelletier, M. Ruck, R. Barrès, O. Yvon, J. Villiéras, F. and Cathelineau, M., (2001) Caractérisation fine de l’argile brute MX-80: caractérisation minéralogique, cristallochimique et texturale de l’argile MX-80 France ANDRA C RP 1ENG 01-001 94 pp.Google Scholar
Simms, P.H. and Yanful, E.K., (2005) A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils Canadian Geotechnical Journal 42 499514 10.1139/t05-002.CrossRefGoogle Scholar
Svensk Kärnbränslehantering AB (2002) Äspö Hard Rock Laboratory. Annual Report 2001. SKB Technical Report TR-02-10, Stockholm, 184 pp.Google Scholar
Villar, M.V. (2002) Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata. A study applied to the use of bentonite as sealing material in high level radioactive waste repositories. Publicación Técnica ENRESA 01/2002, Madrid, 258 pp.Google Scholar
Villar, M.V. (2005) MX-80 bentonite. Thermo-hydro-mechanical characterisation performed at CIEMAT in the context of the Prototype Project. Informes Técnicos CIEMAT 1053, Madrid, 45 pp.Google Scholar
Villar, M.V. and Lloret, A., (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite Applied Clay Science 26 337350 10.1016/j.clay.2003.12.026.CrossRefGoogle Scholar
Villar, M.V. García-Siñeriz, J.L. Bárcena, I. and Lloret, A., (2005) State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository Engineering Geology 80 175198 10.1016/j.enggeo.2005.05.001.CrossRefGoogle Scholar
Villar, M.V. Martín, P.L. Lloret, A., Tarantino, A. Romero, E. and Cui, Y.J., (2005) Determination of water retention curves of two bentonites at high temperature Advanced Experimental Unsaturated Soil Mechanics. Experus 2005 London A.A. Balkema Publishers 7782.Google Scholar
Yahia-Aissa, M., (1999) Comportement hydromécanique d’une argile gonflante fortement compactée Paris École Nationale des Ponts et Chaussées, CERMES PhD thesis.Google Scholar
Yahia-Aissa, M. Delage, P. Cui, Y.J., Adachi, K. and Fukue, M., (2001) Suction-water content relationship in swelling clays Clay Science for Engineering Rotterdam Balkema 6568.Google Scholar