Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:29:05.824Z Has data issue: false hasContentIssue false

Vapor-Phase Sorption Kinetics for Methanol, Propan-2-OL, and 2-Methylpropan-2-OL on Al3+-, Cr3+-, and Fe3+-Exchanged Montmorillonite

Published online by Cambridge University Press:  02 April 2024

C. Breen*
Affiliation:
School of Chemical Sciences, National Institute for Higher Education, Glasnevin, Dublin 9, Ireland
A. T. Deane
Affiliation:
School of Chemical Sciences, National Institute for Higher Education, Glasnevin, Dublin 9, Ireland
J. J. Flynn
Affiliation:
School of Chemical Sciences, National Institute for Higher Education, Glasnevin, Dublin 9, Ireland
D. Reynolds
Affiliation:
School of Mathematical Sciences, National Institute for Higher Education, Glasnevin, Dublin 9, Ireland
*
1Current address: Chemistry Department, Sheffield City Polytechnic, Pond Street, Sheffield S1 1WB, United Kingdom.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rate of sorption of methanol (MeOH), propan-2-ol (i-PrOH), and 2-methyl-propan-2-ol (t-BuOH) onto a Wyoming montmorillonite saturated with Al3+-, Cr3+-, or Fe3+-cations has been studied by isothermal gravimetry in the temperature range 18°–105°C using samples of differing weights and grain-size distributions. The rate of sorption for all the alcohols increased with decreasing sample and grain size, demonstrating that inter-, rather than intraparticle mass transfer was the rate-limiting process. Optimization of the sample parameters (2 mg sample of < 45-μm grain size, pretreated at 120°C yielded integral diffusion coefficients at 18°C of 1.1 × 10−4 m2/s for t-BuOH for the Cr3+-form and 2.0 × 10−14 m2/s for MeOH and i-PrOH for the Al3+-form. In general, the rate of alcohol sorption decreased as MeOH ≥ i-PrOH > t-BuOH, but no temperature dependence of the sorption rate was observed. The alcohol sorption rate was dependent on the cation present, with Fe3+ < Cr3+ < Al3+.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M. and Thomas, J. M., 1978 Organic synthesis using sheet silicate intercalates: Low temperature conversion of olefin to secondary ether Angew. Chemie. Int. Ed. 17 282283.CrossRefGoogle Scholar
Adams, J. M., Breen, C. and Riekel, C., 1979 The diffusion of interlamellar water in the 23.3-Å Na+-mont-morillonite:pyridine/H2O intercalate by quasielastic neutron scattering Clays & Clay Minerals 27 140144.CrossRefGoogle Scholar
Adams, J. M., Breen, C. and Riekel, C., 1979 Deuterium/ hydrogen exchange in interlamellar water in the 23.3-0A Na+-montmorillonite pyridine/water intercalate J. Colloid Interface Sci. 68 214220.CrossRefGoogle Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1981 Low temperature reactions of alcohols to form t-butyl ethers using clay catalysts J. Chem. Res. (S) 254255.Google Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1982 Synthesis of methyl t-butyl ether from methanol and iso-butene using a clay catalyst Clays & Clay Minerals 30 129134.CrossRefGoogle Scholar
Adams, J. M., Reid, P. I. and Walters, M. J., 1977 The cation-exchange capacity of clays School Sci. Review 59 722725.Google Scholar
Atkins, M. P., Smith, D. J. H. and Westlake, D. J., 1983 Montmorillonite catalyst for ethylene hydration Clay Miner. 19 423430.CrossRefGoogle Scholar
Barrer, R. M., 1978 Zeolites and Clay Minerals as Sorbents and Molecular Sieves New York Academic Press 258338.Google Scholar
Barrer, R. M. and Macleod, D. M., 1954 Intercalation and sorption by montmorillonite Trans. Faraday Soc. 50 980989.CrossRefGoogle Scholar
Bennet, H. and Reed, R. A., 1971 Chemical Methods of Silicate Analysis London Academic Press 7179.Google Scholar
Breen, C., Adams, J. M. and Riekel, C., 1985 Review of the diffusion of pyridine and water in the interlamellar space of montmorillonite: Relevance to kinetics of catalytic reactions in clays Clays & Clay Minerals 33 275284.CrossRefGoogle Scholar
Breen, C., Deane, A. T. and Flynn, J. J., 1987 The acidity of trivalent cation-exchanged montmorillonite. Temperature programmed desorption and infra-red studies of pyridine and n-butylamine Clay Miner .CrossRefGoogle Scholar
Carslaw, H. S. and Jaeger, J. C., 1959 Conduction of Heat in Solids Oxford Oxford University Press 330331.Google Scholar
Crank, J., 1956 The Mathematics of Diffusion Oxford Clarendon Press 184.Google Scholar
Doelle, H.-J. and Riekert, L., 1979 Kinetics of sorption, desorption and diffusion in zeolites Angew. Chemie. Int. Ed. Engl. 18 266272.CrossRefGoogle Scholar
Eagan, J. D., Kindl, B. and Anderson, R.B., 1971 Kinetics of adsorption on A zeolites. Temperature effects Adv. Chem. 102 164170.CrossRefGoogle Scholar
Gregory, R., Smith, D. J. H. and Westlake, D. J., 1983 The production of ethyl acetate from ethylene and acetic acid using clay catalysts Clay Miner. 18 431435.CrossRefGoogle Scholar
Karger, J., Pfeifer, H., Rausch, M. and Walter, A., 1980 Self-diffusion of n-paraffins in NaX zeolite J. Chem. Soc., Faraday Trans. I 16 717737.CrossRefGoogle Scholar
Ilavsky, J., Brunovska, B. and Hlavacek, V., 1980 Experimental observation of temperature gradients occurring in a single zeolite pellet Chem. Eng. Sci. 35 24752479.CrossRefGoogle Scholar
Lee, L.-P. and Ruthven, D. M., 1979 Analysis of thermal effects in adsorption rate measurements J. Chem. Soc., Faraday Trans. 1 75 24062422.CrossRefGoogle Scholar
Moore, R. M. and Katzer, J. R., 1972 Counterdiffusion of liquid hydrocarbons in type Y zeolite: Effect of molecular size, molecular type, and direction of diffusion J. Amer. Inst. Chem. Eng. 18 816824.CrossRefGoogle Scholar
Ross, D. K., Hall, P. L., Stucki, J. W. and Banwart, W. L., 1980 Neutron scattering methods of investigating clay systems Advanced Chemical Methods for Soil and Clay Minerals Research Holland D. Riedel, Dordrecht 93168.CrossRefGoogle Scholar
Ruthven, D. M., 1984 Principles of Adsorption and Adsorption Processes New York Wiley 124165.Google Scholar
Tennakoon, D. T. B. Schogl, R., Rayment, T., Klinowski, J., Jones, W. and Thomas, J. M., 1983 The characterisation of clay organic systems Clay Miner. 18 357371.CrossRefGoogle Scholar
Thomas, J. M., Whittingham, M. S. and Jacobson, A. J., 1982 Sheet silicate intercalates: New agents for unusual chemical conversions Intercalation Chemistry New York Academic Press 5799.Google Scholar