Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T21:48:42.013Z Has data issue: false hasContentIssue false

Use of X-Ray Transmission Diffractometry for the Study of Clay-Particle Orientation at Different Water Contents

Published online by Cambridge University Press:  28 February 2024

A. C. Iñigo
Affiliation:
IRNA, Cordei de Merinas 40-52, 37008, Salamanca, Spain
D. Tessier*
Affiliation:
INRA, Science du Sol, 78026 Versailles, France
M. Pernes
Affiliation:
INRA, Science du Sol, 78026 Versailles, France
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Homoionic Ca-saturated clay pastes were prepared and drying curves were obtained by applying suction pressures from 1 kPa to 100 MPa, A transmission device was used to study particle orientation by placing the clay in a cell specially designed to obtain diagrams corresponding to different sample orientations. The 00l and hk0 reflections were compared to determine the best reflections for studying clay-particle orientation. Depending on the clay, 00/ reflections or the 020 reflection and/or hkl bands can be used to analyze orientation. In many cases the 020 reflection is preferred because the intensity of the peak is high and appears to be independent of the H2O content and the degree of stacking order of layers along the [001] direction.

For interstratified clays, the conditions required to obtain 00l reflections depended on several factors, the most important of which is the water content. Also, the intensity relating to particie orientation depends on (1) particle extension (size) in the (001) plane and (2) the crystal structure. Illite crystals of <1000 A gave a poorly oriented clay matrix. In contrast, large aggregates of illite, smectite, and kaolinite particles (>10,000 Å) showed a strongly oriented system. The particles of smectites may be curved and the dry material was poorly oriented owing to weak cohesion forces between the layers in comparison to illite.

The study of the orientation of particles by X-ray diffraction on hydrated samples may be affected by sample mounting techniques. Any change in the content or the way the sample is mounted may modify the microstructure of a material.

Clay containing a high water content affects the disorientation of particles, whereas, for the dry samples, pore size, pore volume, and solid continuity are associated with the geometry and crystal structure of the clay matrix.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Assouline, S. Tavares-Filho, J. and Tessier, D., (1997) Effect of compaction on soil physical and hydraulic properties: Experimental results and modeling Soil Science Society of America Journal 61 390398 10.2136/sssaj1997.03615995006100020005x.CrossRefGoogle Scholar
Aylmore, L.A.G. and Quirk, J.P., (1959) Swelling of claywater systems Nature 183 17521753 10.1038/1831752a0.CrossRefGoogle Scholar
Ben Rhaïem, H. Pons, C.H. and Tessier, D., (1987) Factors affecting the microstructure of smectites Role of Cation and History of Applied Stresses. Proceedings of International Clay Conference, Denver, Colorado Colorado The Clay Minerals Society, Boulder 292297.Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., (1980) Order-disorder in clay minerals structures Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 125195.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., (1980) Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Courville, J. Tchoubar, D. and Tchoubar, C., (1979) Détermination expérimentale de la fonction d’orientation. Son application dans les calculs des bandes de diffraction Journal of Applied Crystallography 12 322338 10.1107/S0021889879012644.CrossRefGoogle Scholar
Djéran-Maigre, I. Tessier, D. Grunberger, D. Velde, B. and Vasseur, G., (1998) Evolution of microstructures and of macroscopie properties of some clays during experimental compaction Marine and Petroleum Geology 15 109129 10.1016/S0264-8172(97)00062-7.CrossRefGoogle Scholar
Elsass, F. Beaumont, A. Pemes, M. Jaunet, A.M. and Tessier, D., (1998) Changes in layer organization of Na- and Ca-exchanged smectite materials during solvent exchanges for embedment in resin The Canadian Mineralogist 36 14751483.Google Scholar
Grossman, R.B. and Millet, J.C., (1961) Carbonate removal from soils by a modification of the acetate buffer method Soil Science Society of America Proceedings 25 325326 10.2136/sssaj1961.03615995002500040028x.CrossRefGoogle Scholar
Inigo, A.C. and Tessier, D., (1996) Crystal structure and particle orientation in relation to behavior of clays during drying Advances in Clay Minerals 7072.Google Scholar
Kim, J.M. Peacor, D.R. Tessier, D. and Elsass, F., (1995) A technique for maintaining texture and permanent expansion of smectite interlayer spacings for TEM observations Clays and Clay Minerals 43 5157 10.1346/CCMN.1995.0430106.CrossRefGoogle Scholar
Kunze, G.W. Rich, C.I., Rich, C.I. Seatz, L. and Kunze, F., (1959) Mineralogical methods Certain Properties of Selected Southeastern United States Soils and Mineralogical Procedures for Their Study 135146.Google Scholar
Mamy, J., (1975) Les phéomènes de diffraction des rayonnements X et électroniques par les réseaux atomiques: Application à l’étude de l’ordre cristallin dans les minéraux argileux Annales Agronomiques 26 625650.Google Scholar
McBride, M.B., (1989) Reactions controlling heavy metal solubility in soils Advances in Soil Science 10 156 10.1007/978-1-4613-8847-0_1.Google Scholar
Méring, J., (1946) On the hydration of montmorillonite Transactions of the Faraday Society 42B 205219 10.1039/tf946420b205.CrossRefGoogle Scholar
Méring, J., (1949) L’interférence des rayons X dans les systèmes à stratification désordonnée Acta Crystallographica 2 371377 10.1107/S0365110X49000977.CrossRefGoogle Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., (1984) Interstratified minerals as fundamental particles Science 225 923925 10.1126/science.225.4665.923.CrossRefGoogle ScholarPubMed
Norrish, K., (1954) The swelling of montmorillonite Discussions of the Faraday Society 18 120134 10.1039/df9541800120.CrossRefGoogle Scholar
Plançon, A., (1980) The calculation of intensities diffracted by a partially oriented powder with a layer structure Journal of Applied Crystallography 13 524528 10.1107/S002188988001271X.CrossRefGoogle Scholar
Pons, C.H. Rousseaux, F. and Tchoubar, D., (1981) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites: 1. Etude du système eau-montmorillonite-Na en fonction de la température Clay Minerals 16 2342 10.1180/claymin.1981.016.1.02.CrossRefGoogle Scholar
Reynolds, R.C., Brindley, G.W. and Brown, F., (1980) Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Robert, M. and Tessier, D., (1974) Méthode de préparation des argiles des sols pour études minéralogiques Annales Agronomiques 25 859882.Google Scholar
Taylor, R.M. and Norrish, K., (1966) The measurement of orientation distribution and its application to quantitative X-ray diffraction analysis Clay Minerals 6 127142 10.1180/claymin.1966.006.3.01.CrossRefGoogle Scholar
Tessier, D., (1978) Etude de l’organisation des argiles calciques. Evolution au cours de la dessiccation Annales Agronomiques 29 319355.Google Scholar
Tessier, D., (1978) Technique d’étude de l’orientation des particules argileuses utilisable sur des échantillons secs et humides Annales Agronomiques 29 193207.Google Scholar
Tessier, D., (1984) Etude Expérimentale de l’Organisation des Matériaux Argileux: Hydratation, Gonflement et Structuration au Cours de la Dessiccation et de la Réhumectation France INRA Versailles.Google Scholar
Tessier, D., De Boodt, M.F. Hayes, M. and Herbillon, A., (1991) Behavior and microstructure of clay minerals Soil Colloids and Their Associations in Aggregates New York NATO Book Series, Plenum Publishing Corporation 387415.Google Scholar
Tessier, D. and Pédro, G., (1976) Les modalités de l’organisation des particules dans les matériaux argileux. Evolution des principales argiles Ca au cours du phénomène de retrait Science du Sol 2 8599.Google Scholar
Tessier, D. Pédro, G., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Mineralogical Characterization of 2:1 Clays in Soils: Importance of the Clay Texture Proceedings of the International Clay Conference, Denver, 1985 Indiana The Clay Minerals Society, Bloomington 7884.Google Scholar
Tessier, D. Bouzigues, J.C. Favrot, J.C. and Valles, V., (1992) Influence du micro-relief sur l’évolution texturate dans les sols lessivés de la vallée de la Garonne. Différenciation des structures vertique et prismatique Comptes Rendus Académie Sciences Paris 315 10271032.Google Scholar
Touret, O. Pons, C.H. Tessier, D. and Tardy, Y., (1990) Etude de la répartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau Clay Minerals 25 217233 10.1180/claymin.1990.025.2.07.CrossRefGoogle Scholar
Vasseur, G. Djéran-Maigre, I. Grunberger, D. Rousset, G. Tessier, D. and Velde, B., (1995) Evolution of structural and physical parameters of clays during experimental compaction Marine and Petroleum Geology 12 941954 10.1016/0264-8172(95)98857-2.CrossRefGoogle Scholar
Wiewiora, A., (1982) Oblique-texture method in transmission X-ray diffractometry of clays and clay minerals Proceedings of the 9th Clay Mineralogy and Petrology Conference, Zvolen-Praha, Czechoslovakia 4351.Google Scholar
Wiewiora, A. and Weiss, Z., (1985) X-ray powder transmission diffractometry determination of mica polytypes: Method and application to natural samples Clay Minerals 20 231248 10.1180/claymin.1985.020.2.07.CrossRefGoogle Scholar
Wilding, L. Tessier, D., Wilding, L. and Puentes, R., (1988) Genesis of vertisols: Shrink-swell phenomena Vertisols: Their Distribution, Properties, Classification and Management Texas Texas A & M University 5581.Google Scholar