Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T05:44:25.050Z Has data issue: false hasContentIssue false

Use of Natural and Modified Magadiite As Adsorbents to Remove Th(IV), U(VI), and Eu(III) from Aqueous Media — Thermodynamic and Equilibrium Study

Published online by Cambridge University Press:  01 January 2024

Denis L. Guerra*
Affiliation:
Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiabá, Mato Grosso 78060 900, Brazil
Josane N. Ferrreira
Affiliation:
Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiabá, Mato Grosso 78060 900, Brazil
Mário J. Pereira
Affiliation:
Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiabá, Mato Grosso 78060 900, Brazil
Rúbia R. Viana
Affiliation:
Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiabá, Mato Grosso 78060 900, Brazil
Claudio Airoldi
Affiliation:
Chemistry Institute, State University of Campinas, P. O. Box 6154, 13084-971 Campinas, São Paulo, Brazil
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The contamination of aquatic environments by toxic metals such as radionuclides is of great concern because of the tendency of those metals to accumulate in the vital organs of humans and animals, causing severe health problems. The objective of this study was to investigate the use of natural and modified magadiite clay as an adsorbent to remove Th(IV), U(VI), and Eu(III) from aqueous solutions. Magadiite from the Amazon region, Brazil, was modified chemically with 5-mercapto-1-methyltetrazole (MTTZ) using a multi-step or heterogeneous synthesis pathway. The natural and modified materials were characterized using 29Si and 13C nuclear magnetic resonance, scanning electron microscopy, nitrogen gas adsorption, and elemental analysis. The physical-chemical properties of the chemically modified magadiite sample were modified, e.g. the specific surface area changed from 35.0 to 678.9 m2 g−1. The ability of the magadiite to remove Th(IV), U(VI), and Eu(III) from aqueous solution was then tested by a series of adsorption isotherms adjusted to a Sips equation. The effects of properties such as pH, contact time, and metal concentration on the adsorption capacity were studied. The adsorption maxima were determined to be 7.5 × 10−3, 9.8 × 10−3, and 12.9 × 10−3 mmol g−1 for Th(IV), U(VI), and Eu(III), respectively. From calorimetric determinations, the quantitative thermal effects for all these cations/basic center interactions gave exothermic enthalpy, negative Gibbs free energy, and positive entropy, confirming the energetically favorable conditions of such interactions at the solid/liquid interface for all systems.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

References

Alcântara, E.F.C. Faria, E.A. Rodrigues, D.V. Evangelista, S.M. DeOliveira, E. Zara, L.F. Rabelo, D. and Prado, A.G.S., 2007 Modification of silica gel by attachment of mercaptobenzimidazole for use in removal Hg(II) from aqueous media: A thermodynamic approach Surface Science 311 17.Google Scholar
Almond, G.G. Harris, R.K. and Franklin, K.R., 1997 A structural consideration of kanemite, octosilicate, magadiite and kenyaite Journal of Materials Chemistry 7 681687 10.1039/a606856a.CrossRefGoogle Scholar
Babel, S. and Kurniawan, T.A., 2003 Low-cost adsorbents for heavy metals uptake from contaminated water: a review Journal of Hazardous Materials 97 219243 10.1016/S0304-3894(02)00263-7.CrossRefGoogle ScholarPubMed
Barret, E.P. Joyner, L.G. and Halenda, P.P., 1951 The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms Journal of the American Chemical Society 73 373380 10.1021/ja01145a126.CrossRefGoogle Scholar
Beurlen, H. Da Silva, M.R.R. Thomas, R. Soares, D.R. and Olivier, P., 2008 Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil Mineralium Deposita 43 207228 10.1007/s00126-007-0152-4.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E.E., 1938 The adsorption of gas in multimolecular layer Journal of the American Chemical Society 60 309319 10.1021/ja01269a023.CrossRefGoogle Scholar
Cestari, A.R. Vieira, E.F.S. Vieira, GS d Costa, L.P. Tavares, A.M.G. Loh, W. and Airoldi, C., 2009 The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant — The temperature dependence and a thermodynamic multivariate analysis Journal of Hazardous Materials 161 307316 10.1016/j.jhazmat.2008.03.091.CrossRefGoogle Scholar
Dias Filho, N.L., 1998 Adsorption of copper(II) and cobalt(II) complexes on a silica gel surface chemically modified with amino-1,2,4-triazole Colloids and Surfaces, A. Physicochemical and Engineering Aspects 144 219227 10.1016/S0927-7757(98)00569-X.CrossRefGoogle Scholar
Díaz, U. Cantin, A. and Corma, A., 2007 Novel layer organic-inorganic hybrid materials with bridged silsesquioxanes as pillars Chemistry of Materials 19 36863693 10.1021/cm070553+.CrossRefGoogle Scholar
Evangelista, S.H.M. De Oliveira, E. Castro, G.R. Zara, L.F. and Prado, A.G.S., 2007 Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing mercury from water solution Surface Science 601 21942202 10.1016/j.susc.2007.03.020.CrossRefGoogle Scholar
Fialips, C.I. Huo, D. Yan, L. Wu, J. and Stucki, J.W., 2002 Infrared study of reduced and reduced-reoxidized ferruginous smectite Clays and Clay Minerals 50 455469 10.1346/000986002320514181.CrossRefGoogle Scholar
Freundlich, H.M.F., 1906 Über die adsorption in Iösungen Zeitschrift für Physikalische Chemie 57A 385470.Google Scholar
Garces, J.M. Rocke, S.C. Crowder, C.E. and Hasha, D.L., 1988 Hypothetical structures of magadiite and sodium octosilicate and structural relationships between the layered alkali metal silicates and the mordenite- and pentasil-group zeolites Clays and Clay Mnerals 36 409418 10.1346/CCMN.1988.0360505.CrossRefGoogle Scholar
Guerra, D.L. Lemos, V.P. Airoldi, C. and Angelica, R.S., 2006 Influence of the acid activation of pillared smectites from Amazon (Brazil) in adsorption process with butilamine Polyhedron 25 28802890 10.1016/j.poly.2006.04.015.CrossRefGoogle Scholar
Guerra, D.L. Airoldi, C. Lemos, V.P. Angélica, R.S. and Viana, R.R., 2007 Aplicação de Al-PILC na adsorção de Cu2+, Ni2+,Co2+ utilizando modelos físico-químicos de adsorção Eclética Química 32 5160 10.1590/S0100-46702007000300008.CrossRefGoogle Scholar
Guerra, D.L. Airoldi, C. Lemos, V.P. and Angélica, R.S., 2008 Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from the Brazilian Amazon region for zinc cation removal Journal of Hazardous Materials 155 230242 10.1016/j.jhazmat.2007.11.054.CrossRefGoogle ScholarPubMed
Guerra, D.L. Airoldi, C. and Viana, R.R., 2008 Performance of modified montmorillonite clay in mercury adsorption process and thermodynamic studies Inorganic Chemistry Communications 11 2024 10.1016/j.inoche.2007.09.029.CrossRefGoogle Scholar
Guo, Y. Wang, Y. Yang, Q.-X. Li, G.-D. Wang, C.-S. Cui, Z.-C. and Chen, J.-S., 2004 Preparation and characterization of magadiite grafted with an azobenzene derivative Solid State Sciences 6 10011006 10.1016/j.solidstatesciences.2004.04.006.CrossRefGoogle Scholar
Ho, Y.S. and McKay, G.M., 1999 Pseudo-second order model for sorption process Process Biochemistry 34 451465 10.1016/S0032-9592(98)00112-5.CrossRefGoogle Scholar
Huheey, J.E. Keiter, E.A. and Keiter, R.L., 1993 Inorganic Chemistry, Principles of Structure and Reactivity New York Harper Collins.Google Scholar
Jänchen, J. Morris, R.V. Bish, D.L. Janssen, M. and Hellwig, U., 2009 The H2O and CO2 adsorption properties of phyllosilicate-poor palagonitic dust and smectites under Martian environmental conditions Icarus 200 463467 10.1016/j.icarus.2008.12.006.CrossRefGoogle Scholar
Karadag, D. Koc, Y. Turan, M. and Ozturk, M., 2007 A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolites Journal of Hazardous Materials 144 432437 10.1016/j.jhazmat.2006.10.055.CrossRefGoogle Scholar
Komori, Y. Miyoshu, M. Hayashi, S. Sugahara, Y. and Kuroda, K., 2000 Characterization of silanol groups in protonated magadiite by 1H and 2H solid-state nuclear magnetic resonance Clays and Clay Minerals 48 632637 10.1346/CCMN.2000.0480604.CrossRefGoogle Scholar
Lagergren, S., 1898 About the theory of so-called adsorption of soluble substances Kungliga Suenk Vetenskapsakademiens Handlingar 241 139.Google Scholar
Langmuir, I., 1918 The adsorption of gases on plane surfaces of glass, mica and platinum Journal of the American Chemical Society 40 13611403 10.1021/ja02242a004.CrossRefGoogle Scholar
Lazarin, A.M. and Airoldi, C., 2007 Thermochemistry of intercalation of n-alkylmonoamines into lamellar hydrated barium phenylarsonate Thermochimica Acta 454 4349 10.1016/j.tca.2006.12.016.CrossRefGoogle Scholar
Leppert, D., 1990 Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water Mining Engineering 42 604608.Google Scholar
Macedo, T.R. Petrucelli, G.C. and Airoldi, C., 2007 Silicic acid magadiite guest molecules and features related to the thermodynamics of intercalation Clays and Clay Minerals 55 151159 10.1346/CCMN.2007.0550204.CrossRefGoogle Scholar
Machado, T.R. Fonseca, M.G. Arakaki, L.N.H. and Oliveira, S.F., 2004 Silica gel containing sulfur, nitrogen and oxygen as adsorbents centers on surface for removing copper from aqueous/ethanolic solutions Talanta 63 317322 10.1016/j.talanta.2003.10.048.CrossRefGoogle ScholarPubMed
Malkoc, E. Nuhoglu, Y. and Dundar, M., 2006 Adsorption of chromium(VI) on pomace — an olive oil industry waste: batch and column studies Journal of Hazardous Materials 138 142151 10.1016/j.jhazmat.2006.05.051.CrossRefGoogle ScholarPubMed
Mizukami, N. Mizukami, N. Tsujimura, M. Kuroda, K. and Ogawa, M., 2002 Preparation and characterization of Eumagadiite intercalation compounds Clays and Clay Minerals 50 799806 10.1346/000986002762090335.CrossRefGoogle Scholar
Pérez-Quintanilla, D.P. Del Hierro, I. Fajardo, M. and Serra, I., 2007 Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole Journal of Colloid and Interface Science 313 551562 10.1016/j.jcis.2007.04.063.CrossRefGoogle ScholarPubMed
Pérez-Quintanilla, DP D Hierro, I. Fajardo, M. and Serra, I., 2006 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media Journal of Hazardous Materials 134 245256 10.1016/j.jhazmat.2005.11.004.CrossRefGoogle ScholarPubMed
Prado, A.G.S. and Airoldi, C., 2001 Adsorption preconcentration and separation of cations on silica gel chemically modified with the herbicide 2,4-dichlorophenoxyacetic acid Analytica Chimica Acta 432 201211 10.1016/S0003-2670(00)01372-6.CrossRefGoogle Scholar
Ruiz, V.S.O. and Airoldi, C., 2004 Thermochemical data for n-alkylmonoamine intercalation into crystalline lamellar zirconium phenylphosphonate Thermochimica Acta 420 7378 10.1016/j.tca.2003.10.029.CrossRefGoogle Scholar
Salih, B. Denizli, A. Kavakli, C. and Pipkin, E., 1998 Adsorption of heavy metal ions onto dithizone-anchored poly (EGDMA-HEMA) microbeads Talanta 46 12051213 10.1016/S0039-9140(97)00362-7.CrossRefGoogle ScholarPubMed
Shahwan, T. and Erten, H.N., 2005 Characterization of Sr2+ uptake on natural minerals of kaolinite and magnesite using XRPD, SEM/EDS, XPS, and DRIFT Radiochimica Acta 93 225232 10.1524/ract.93.4.225.64066.CrossRefGoogle Scholar
Shanmugharaj, A.M. Rhee, K.Y. and Ryu, S.H., 2006 Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials Journal of Colloid and Interface Science 298 854859 10.1016/j.jcis.2005.12.049.CrossRefGoogle ScholarPubMed
Sharma, P. and Tomar, R., 2008 Synthesis and application of an analogue of mesolite for removal of uranium(VI), thorium(IV), and europium(III) from aqueous waste Microporous and Mesoporous Materials 116 641652 10.1016/j.micromeso.2008.05.036.CrossRefGoogle Scholar
Sheng, G. Hu, J. and Wang, X., 2008 Sorption properties of Th(IV) on the raw diatomite — Effects of contact time, pH, ionic strength and temperature Applied Radiation and Isotopes 66 13131320 10.1016/j.apradiso.2008.03.005.CrossRefGoogle ScholarPubMed
Sips, R., 1948 On the structure of a catalyst surface Journal of Chemical Physics 16 490495 10.1063/1.1746922.CrossRefGoogle Scholar
Stucki, J.W. Wu, J. Gan, H. Komadel, P. and Banin, A., 2000 Effect of iron oxidation state and organic cations on dioctahedral smectite hydration Clays and Clay Minerals 48 290298 10.1346/CCMN.2000.0480216.CrossRefGoogle Scholar
Tang, X. Li, Z. and Chen, Y., 2009 Adsorption behavior of Zn(II) on calcinated Chinese loess Journal of Hazardous Materials 161 824834 10.1016/j.jhazmat.2008.04.059.CrossRefGoogle ScholarPubMed
Xia, K. Bleam, W. and Helmke, P.A., 1997 Studies of the nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy Geochimica et Cosmochimica Acta 61 22232235 10.1016/S0016-7037(97)00080-X.CrossRefGoogle Scholar
Xiu-Wen, W. Hong-Wen, M. Jin-Hong, L. Zhang, J. and Zhi-Hong, L., 2007 The synthesis of mesoporous aluminosilicate using microcline for adsorption of mercury(II) Journal of Colloid and Interface Science 315 555561 10.1016/j.jcis.2007.06.074.Google Scholar
Xu, D. Wang, K.X. Chen, C.L. Zhou, X. and Tan, X.L., 2006 Influence of soil humic acid and fulvic acid on sorption of Thorium(IV) on MX-80 bentonite Radiochimica Acta 94 429434.CrossRefGoogle Scholar