Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:23:51.194Z Has data issue: false hasContentIssue false

Trimethyl Phosphate Induced Decomposition of Kaolinite

Published online by Cambridge University Press:  28 February 2024

María Sánchez-Camazano
Affiliation:
Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Apdo. 257, 37071, Salamanca, Spain
M. Jesús Sánchez-Martín
Affiliation:
Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Apdo. 257, 37071, Salamanca, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The decomposition of kaolinite by treatment with trimethyl phosphate (TMP) and the composition of the new crystalline phase formed were studied. On hot treatment with TMP, kaolinite forms a crystalline white compound that is soluble in hot water. The X-ray diffraction pattern of the kaolinite treated shows both the typical reflections of kaolinite and, furthermore, a very strong reflection at 8.84 Å. After 30 days of treatment with TMP, the silicate structure of kaolinite is completely destroyed and a crystalline phase identical with that resulting from treatment of aluminium oxide (Al2O3) with TMP is formed. The results show that the compound in question is formed by hydrolysis of TMP, catalyzed by the hydration water of exchange cations of kaolinite, followed by removal of Al from the silicate structure by incompletely hydrolyzed TMP. The new crystalline phase thus formed is an aluminium alkyl phosphate of formula Al(CH3)6(PO4)3.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Beek, J., and Riemsdijk, W. H., (1979) Interaction of orthophosphate ions with soil: in Soil Chemistry. B. Physico-Chemical Models, Bolt, G. H., ed., Elsevier, Amsterdam , 259275.CrossRefGoogle Scholar
Fieser, L. F., and Fieser, M., (1962) Advanced Organic Chemistry: Reinhold Publishing Co., New York, 989 pp.Google Scholar
García, A., and Saavedra, J., (1983) Datos analíticos sobre cuatro patrones geoquímicos de Salamanca (Granitos S.L.) y técnicas utilizadas: Anu. Cent. Edafol. Biol. Apl. Salamanca 9, 321332.Google Scholar
Goldberg, S., and Sposito, G., (1985) On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces. A review: Commun. Soil Sci. Plant Anal. 16, 801821.CrossRefGoogle Scholar
González-García, S., Sánchez-Camazano, M., and González-Zapatero, M., (1970) Complejos de adsorción de la vermiculita con fosfatos de alquilo: in Proc. Reunión Hispaño-Belga de Minerales de la Arcilla, Serratosa, J. M., ed., C.S.I.C., Madrid, 103114.Google Scholar
González-García, S., Sánchez-Camazano, M., and González-Zapatero, M., (1972) Complejos de adsorción de la montmorillonita con fosfatos de alquilo. I. Complejos con fosfatos de tripropilo y tributilo: An. Edafol. Agrobiol. 31, 124.Google Scholar
González-García, S., Sánchez-Camazano, M., and Martín, M. T., (1965) Estudio de un yacimiento de caolin de Cuenca (Spain): An. Edafol. Agrobiol. 24, 657667.Google Scholar
Haseman, J. F., Brown, E. H., and Whitt, C. D., (1950) Some reactions of phosphate with clays and hydrous oxides of iron and aluminium: Soil Sci. 70, 257271.CrossRefGoogle Scholar
Jonasson, R. G., Martin, R. R., Giuliacci, M. E., and Tazaki, K., (1988) Surface reactions of goethite with phosphate: J. Chem. Soc. Faraday Trans. 84, 23112315.CrossRefGoogle Scholar
Kittrick, J. A., and Jackson, M. L., (1954) Electron-microscope observations of aluminium phosphate crystals with kaolinite as source of aluminium: Science 120, 508509.CrossRefGoogle Scholar
Low, P. F., and Black, C. A., (1948) Phosphate induced decomposition of kaolinite: Soil Sci. Soc. Am. Proc. 12, 180184.CrossRefGoogle Scholar
Lucena, F., and Prat, L., (1957) Nuevo reactivo para la determinación colorimétrica y espectrofotométrica de arsénico, fósforo y germanio: An. Edafol. Agrobiol. 16, 118.Google Scholar
Martín, R. R., Smart, R. C., and Tazaki, K., (1988) Direct observation of phosphate precipitation in the goethite-phosphate systems: Soil Sci. Soc. Am. J. 52, 14921500.CrossRefGoogle Scholar
Mingelgrin, U., Saltzman, S., and Yaron, B., (1977) A possible model for the surface-induced hydrolysis of organophosphorus pesticides on kaolinite clays: Soil Sci. Soc. Am. J. 41, 519523.CrossRefGoogle Scholar
Pruden, G., and King, H. G. C., (1969) Scheme of semimicro analysis for the major elements: Clay Miner. 8, 113.CrossRefGoogle Scholar
Saltzman, S., Mingelgrin, U., and Yaron, B., (1976) Role of water in the hydrolysis of parathion and methylparathion on kaolinite: J. Agric. Food Chem. 24, 739743.CrossRefGoogle Scholar
Saltzman, S., Yaron, B., and Mingelgrin, U., (1974) The surface catalyzed hydrolysis of parathion on kaolinite: Soil Sci. Soc. Am. Proc. 38, 231234.CrossRefGoogle Scholar
Sánchez-Camazano, M., and González-García, S., (1966) Complejos interlaminares de caolinita y haloisita con liquidos polares: An. Edafol. Agrobiol. 25, 925.Google Scholar
Sánchez-Camazano, M., González-García, S., and González-Zapatero, M., (1972) Complejos de adsorción de la mont-morillonita con fosfatos de alquilo. II. Complejos con fosfatos de trimetilo y trietilo: An. Edafol. Agrobiol. 31, 2542.Google Scholar
Van Riemsdijk, W. H., Weststrate, F. A., and Bolt, G. H., (1975) Evidence for new aluminium phosphate phase from reaction rate of phosphate with aluminium hydroxide: Nature 257, 473474.CrossRefGoogle Scholar
Veith, J. S., (1978) Formation of X-ray amorphous aluminium O-phosphates from precipitation and secondary precipitation: Z. Pflanz. Bodenk. 141, 2942.CrossRefGoogle Scholar
Weiss, A., (1961) Eine schichteinschlussverbindung von kaolinit mit Harnstoff: Angew. Chem. 73, 736744.CrossRefGoogle Scholar