Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T02:49:56.583Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy of Fine-Grained Phyllosilicates in Ultra-Thin Rock Sections

Published online by Cambridge University Press:  01 July 2024

P. P. Phakey*
Affiliation:
Department of Geology, University of California, Los Angeles, Calif. 90024, U.S.A.
C. D. Curtis*
Affiliation:
Department of Geology, University of California, Los Angeles, Calif. 90024, U.S.A.
G. Oertel
Affiliation:
Department of Geology, University of California, Los Angeles, Calif. 90024, U.S.A.
*
*Department of Physics, University of California, Berkeley. (Permanent address: Department of Physics, Monash University, Melbourne, Australia.)
Permanent address: Department of Geology, The University, Sheffield S1 3JD, England.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method is described for preparing electron-transparent sections of fine-grained argillaceous rocks suitable for making transmission micrographs. A sediment and a slate are used as examples. Sections perpendicular to bedding or cleavage yield diffraction patterns with clearly defined 00l reflections. These allow immediate identification of 7, 10 and 14 Å structures. The combination of detailed textural information with structural identification of individual phyllosilicate particles affords a powerful method for the investigation of late diagenetic and early metamorphic changes in sediments.

Résumé

Résumé

On décrit une méthode pour préparer, à partir de roches argileuses à grain fin, des coupes transparentes aux électrons adaptées à la micrographie par transmission. On prend comme exemples un sédiment et une ardoise. Des coupes perpendiculaires à la stratification ou au clivage donnent des diagrammes de diffraction comportant des réflexions 00l clairement définies. Ces réflexions permettent l’identification immédiate des structures à 7, 10 et 14 Å. La combinaison d’une information texturale détaillée et de l’identification de la structure des particules individuelles de phyllosilicate constitue une méthode puissante dans l’étude des modifications subies par les sédiments à la suite d’une diagenèse avancée et d’un métamorphisme faible.

Kurzreferat

Kurzreferat

Es wird eine Methode beschrieben für die Herstellung elektronentransparenter Schnitte feinkörniger Tongesteine, die geeignet sind für die Erzeugung von Transmissionsmikrographien. Als Beispiele werden ein Sediment und ein Schiefer verwendet. Schnitte in Normalrichtung zum Lager oder Spalt ergeben Beugungsbilder mit klar definierten 00l Reflexionen. Diese gestatten unmittelbare Identifizierung von 7, 10 und 14 Å Gefügen. Die Kombination detaillierter Information über das Gefüge mit struktureller Identifizierung individualler Phyllosilikatteilchen ergibt eine wirksame Methode für die Untersuchung spät diagenetischer und früh metamorphischer Veränderungen in Sedimenten.

Резюме

Резюме

Описывается метод приготовления «прозрачных» для электронов шлифов тонкозернистых глинистых пород пригодных для электронномикроскопических снимков в проходящем пучке. Для примера применялись осадок и сланец. Профили перпендикулярные к наслоению или сланцеватости дали диффракционную картину с ясно выраженными отражениями 00l-го порядка, которые допускают непосредственную идентификацию структур 7, 10 и 14 Å. Это сочетание детальной информации о текстуре со структурной идентификацией индивидуальных частиц филлосиликата представляет отличный метод для изучения последних диагенетических и ранних метаморфических изменений в осадках.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1972

References

Agar, A. W., (1960) Accuracy of selected-area microdiffraction in the electron microscope Br. J. Appl. Phys. 11 185189.CrossRefGoogle Scholar
Barber, D. J., (1970) Thin foils of non-metals made for electron microscopy by sputteretching J. Materials Sci. 5 18.CrossRefGoogle Scholar
Barber, D. J., Hutcheon, I. and Price, P. B., (1971) Extralunar dust in Apollo cores? Science 171 372374.CrossRefGoogle ScholarPubMed
Barber, D. J. and Price, P. B., (1972) Solar flare particle tracks in lunar and meteoritic minerals Proc. 25th Anniversary Meeting of EMAG Cambridge, England Inst. Physics in press.Google Scholar
Blacic, J. D. and Christie, J. M., (1972) The dislocation substructure of experimentally deformed olivine In preparation .CrossRefGoogle Scholar
Christie, J. M., Lally, J. S., Heuer, A. H., Fisher, R. M., Griggs, D. T. and Radcliffe, S. V., (1971) Comparative electron petrography of Apollo 11, Apollo 12, and terrestrial rocks Proc. 2nd Lunar Sci. Conf. 1 6989.Google Scholar
Eckhardt, F. J., (1958) Elektronenoptische Untersuchungen an Einkristallen aus tonigen Sedimenten Neues Jahrb. für Mineralogie, Monatshefte 1958 117.Google Scholar
Fleet, S. G. and Ribbe, P. H., (1965) An electron-microscope study of peristerite plagioclases Min. Maq. 35 165176.Google Scholar
Heuer, A. H., Firestone, R. F., Snow, J. D., Green, H. W., Howe, R. G. and Christie, J. M., (1971) An improved ion thinning apparatus Rev. Sci. Instrum. 42 11771184.CrossRefGoogle Scholar
James, P. F. and McMillan, P. W., (1968) Direct observation of phase separation in glasses Phil. Mag., 8th Series 18 863867.CrossRefGoogle Scholar
McConnell, J. D. C. and Zussman, J., (1967) Electron microscopy and electron diffraction Physical methods in determinative mineralogy London Academic Press 335370.Google Scholar
McLaren, A. C. and Phakey, P. P., (1965) A transmission electron microscope study of amethyst and citrine Austr. J. Phys. 18 135141.10.1071/PH650135CrossRefGoogle Scholar
McLaren, A. C., Retchford, J. A., Griggs, D. T. and Christie, J. M., (1967) Transmission electron microscope study of Brazil twins and dislocations experimentally produced in natural quartz Physica Status Solidi 19 631644.CrossRefGoogle Scholar
McLaren, A. C., Turner, R. G., Boland, J. N. and Hobbs, B. E., (1970) Dislocation structure of the deformation lamellae in synthetic quartz; a study by electron and optical microscopy Contrib. Mineral. Petrol. 29 104115.CrossRefGoogle Scholar
Nissen, H.-U., (1967) Direct electron-microscopic proof of domain texture in orthoclase (KAlSi3O8) Contrib. Mineral. Petrol. 16 354360.10.1007/BF00371530CrossRefGoogle Scholar
Oertel, G., Curtis, C. D. and Phakey, P. P., (1972) A transmission electron microscope and X-ray diffraction study of muscovite and chlorite In preparation .CrossRefGoogle Scholar
Oertel, G. and Phakey, P. (1972) The texture of a slate from Nantlle, Caernarvon, North Wales: Texture 1, in press.CrossRefGoogle Scholar
Paulus, M. and Reverchon, F., (1961) Dispositif de bombardement ionique pour préparations micrographiques J. Phys. Radium 22 103107.Google Scholar
Radcliffe, S. V., Heuer, A. H., Fisher, R. M., Christie, J. M. and Griggs, D. T., (1970) High voltage (800 KV) electron petrography of type B rock from Apollo 11 Proc. Apollo 11 Lunar Science Conference 1 731748.Google Scholar
Tighe, N. J. and Burke, J. J., (1970) Microstructure of fine-grain ceramics Ultrafine Grain Ceramics Syracuse, New York Syracuse Univ. Press 109133.CrossRefGoogle Scholar