Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T07:22:54.810Z Has data issue: false hasContentIssue false

The transformation of synthetic hectorite in the presence of Cu(II)

Published online by Cambridge University Press:  01 January 2024

Håkon Fischer*
Affiliation:
Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland
Peter G. Weidler
Affiliation:
Forschungszentrum Karlsruhe, Institute for Technical Chemistry, Water- and Geotechnology, 76021 Karlsruhe, Germany
Bernard Grobéty
Affiliation:
Institut de Minéralogie, Université de Fribourg, 1700 Fribourg, Switzerland
Jörg Luster
Affiliation:
Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
Andreas U. Gehring
Affiliation:
Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of Cu(II) on the hydrothermal and thermal transformations of a synthetic hectorite was investigated by a combined approach using mainly X-ray diffraction, thermal analyses, and electron paramagnetic resonance spectroscopy. The presence of Cu(II) during hydrothermal treatment increased the crystallite size. Copper (II) was both structure-bound and associated with the inner surfaces of the particles. Upon heating, structural destabilization of the hectorite began at ∼400°C as indicated by the formation of free radicals. Between 600 and 700°C, the hectorite converted to enstatite, and in the presence of Cu(II), to enstatite and richterite. The formation of richterite as an additional conversion product is explained by the creation of structural weakness due to structure-bound Cu(II) in F-containing hectorite. Our results suggest that traces of Cu(II), typical of natural environments, may influence the conversion products in high-temperature geochemical systems.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Billing, D.E. Dudley, R.J. Hathaway, B.J. and Tomlinson, A.A.G., 1971 Single-crystal electronic and electron spin resonance spectra of di-chloroaquo(2,9-dimethyl-l, 10-phenantroline)copper(II) Journal of the Chemical Society (A) 691696.CrossRefGoogle Scholar
Bilton, M.S. Gilson, T.R. and Webster, M., 1972 Vibrational-spectra of some chain type silicate minerals Spectrochimica Acta 28A 21132119 10.1016/0584-8539(72)80185-5.CrossRefGoogle Scholar
Boukerrou, A. Duchet, J. Fellahi, S. and Sautereau, H., 2006 Effect of geometry and surface properties of silicates on nanostructuration of suspension in precursors of an epoxy/amine network Journal of Applied Polymer Science 102 13801390 10.1002/app.24185.CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L., 2002 Thermal evolution of fluorine from smectite and kaolinite Clays and Clay Minerals 50 3846 10.1346/000986002761002658.CrossRefGoogle Scholar
Clementz, D.M. Pinnavaia, T.J. and Mortland, M.M., 1973 Stereochemistry of hydrated copper (II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study The Journal of Physical Chemistry 77 196200 10.1021/j100621a010.CrossRefGoogle Scholar
Decarreau, A., 1980 Experimental crystallogenesis of Mg-smectite — hectorite, stevensite Bulletin de Minéralogie 103 579590.CrossRefGoogle Scholar
Decarreau, A., 1981 Crystallogenesis at low-temperature of trioctahedral smectites by aging silico-metallic co-precipitates of formula ,nH2O, where x changes from 0 to 1, and M2+ is Mg, Ni, Co, Zn, Fe, Cu, Mn Comptes Rendus de Academie des Sciences de Paris Serie II 292 6164.Google Scholar
Farmer, V.C., 1974 The Infrared Spectra of Minerals London Mineralogical Society 10.1180/mono-4.CrossRefGoogle Scholar
Gadsen, J.A., 1975 Infrared Spectra of Minerals and Related Inorganic Compounds London Butterworth.Google Scholar
Gehring, A.U. and Hofmeister, A.M., 1994 The transformation of lepidocrocite during heating: a magnetic and spectroscopic study Clays and Clay Minerals 42 409415 10.1346/CCMN.1994.0420405.CrossRefGoogle Scholar
Gehring, A.U. Fry, I.V. Luster, J. and Sposito, G., 1993 Vanadium(IV) in multimineral lateritic saprolite: a thermo-analytical and spectroscopic study Soil Science Society of America Journal 57 868873 10.2136/sssaj1993.03615995005700030038x.CrossRefGoogle Scholar
Gibbs, G.V. Miller, J.L. and Shell, H.R., 1962 Synthetic fluor-magnesio-richterite American Mineralogist 47 7582.Google Scholar
Green, J.M. MacKenzie, K.J.D. and Sharp, J.H., 1970 Thermal reactions of synthetic hectorite Clays and Clay Minerals 18 339346 10.1346/CCMN.1970.0180606.CrossRefGoogle Scholar
Granquist, W.T. and Pollack, S.S., 1959 A study of the synthesis of hectorite Proceedings of the National Conference on Clays and Clay Minerals 8 150169 10.1346/CCMN.1959.0080115.CrossRefGoogle Scholar
Jones, J.P.E. Angel, B.R. and Hall, P.L., 1974 Electron spin resonance studies of doped synthetic kaolinite. II Clay Minerals 10 257270 10.1180/claymin.1974.010.4.04.CrossRefGoogle Scholar
Karakassides, M.A. Arvaiova, B. Bourlinos, A. Petridis, D. and Komadel, P., 1999 Location of Li(I), Cu(II), Cd(II) in heated montmorillonite: evidence from secular reflectance infrared and electron spin resonance spectroscopies Journal of Materials Chemistry 9 15531558 10.1039/a900819e.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. Yanagisawa, K. Frost, R.L. and Fry, R., 1998 Infrared study of some synthetic and natural beidellites Journal of Materials Science Letters 17 18531855 10.1023/A:1006694629015.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., 1975 X-ray Diffraction Procedures New York J. Wiley.Google Scholar
Luca, V. Chen, X. and Kevan, L., 1991 Characterization of copper(II)-substituted synthetic fluorohectorite clay and interaction with adsorbates by electron spin resonance, electron spin echo modulation and infrared spectroscopies Chemisty of Materials 3 10811087 10.1021/cm00018a025.Google Scholar
Mandair, A.P.S. Michael, J.P. and McWhinnie, W.R., 1990 29Si MASNMR investigations of the thermochemistry of Laponite and hectorite Polyhedron 9 517525 10.1016/S0277-5387(00)86228-2.CrossRefGoogle Scholar
Meads, R.E. and Maiden, P.J., 1975 Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Minerals 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Mohanty, T. Mishra, N.C. Bhat, S.V. Basu, P.K. and Kanjilal, D., 2003 Dense electronic excitation induced defects in silica Journal of Physics D: Applied Physics 36 31513155 10.1088/0022-3727/36/24/010.CrossRefGoogle Scholar
Mosser, C. Michot, L.J. Villieras, F. and Romeo, M., 1997 Migration of cations in copper(II)-exchanged montmorillonite and Laponite upon heating Clays and Clay Minerals 45 789802 10.1346/CCMN.1997.0450603.CrossRefGoogle Scholar
Poonguzhali, E. Srinivasan, R. Ravikumar, R. Chandrasekhar, A.V. Reddy, B.J. Reddy, Y.P. and Sambasiva Rao, P., 2002 Single crystal EPR and optical studies of Cu(II) doped zinc ammonium phosphate hexahydrate: A case of rhombic distortion Physica Scripta 66 391394 10.1238/Physica.Regular.066a00391.CrossRefGoogle Scholar
Rao, P.S. Viswanath, A.K. and Subramanian, S., 1992 EPR of dynamic Jahn-Teller distortion in Cu(II) doped magnesium Tutton’s salt Spectrochimica Acta 48A 17451747 10.1016/0584-8539(92)80248-U.CrossRefGoogle Scholar
Schosseler, P.M. and Gehring, A.U., 1996 Transition metals in Llano vermiculite samples: An EPR study Clays and Clay Minerals 44 470478 10.1346/CCMN.1996.0440404.CrossRefGoogle Scholar
Spagnuolo, M. Martinez, C.E. Jacobson, A.R. Baveye, P.h. McBride, M. and Newton, J., 2004 Coprecipitation of trace metal ions during the synthesis of hectorite Applied Clay Science 27 129140 10.1016/j.clay.2004.03.004.CrossRefGoogle Scholar
Stadelmann, P.A., 1987 EMS — a Software Package for Electron-Diffraction Analysis and Hrem Image Simulation in Materials Science Ultramicroscopy 21 131145 10.1016/0304-3991(87)90080-5.CrossRefGoogle Scholar
Stoll, S. and Schweiger, A., 2006 EasySpin, a comprehensive software package for spectral simulation and analysis in EPR Journal of Magnetic Resonance 178 4255 10.1016/j.jmr.2005.08.013.CrossRefGoogle ScholarPubMed
Strens, R.G.J. and Farmer, V.C., 1974 The common chain, ribbon and ring silicates The Infrared Spectra of Minerals London Mineralogical Society 305330 10.1180/mono-4.14.CrossRefGoogle Scholar
Tarantino, S.C. Ballaran, T.B. Carpenter, M.A. Domeneghetti, M.C. and Tazzoli, V., 2002 Mixing properties of the enstatite-ferrosilite solid solution: II. A microscopic perspective European Journal of Mineralogy 14 537547 10.1127/0935-1221/2002/0014-0537.CrossRefGoogle Scholar
Wertz, J.E. and Bolton, J.R., 1972 Electron Spin Resonance New York McGraw-Hill.Google Scholar