Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T04:11:48.915Z Has data issue: false hasContentIssue false

Transformation Mechanisms and Interstratification in Conversion of Smectite to Kaolinite: An HRTEM Study

Published online by Cambridge University Press:  28 February 2024

Marc Amouric
Affiliation:
CRMC2-CNRS, Campus de Luminy, case 913, 13288 Marseille CEDEX 9, France
Juan Olives
Affiliation:
CRMC2-CNRS, Campus de Luminy, case 913, 13288 Marseille CEDEX 9, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transformation of smectite into kaolinite and kaolinite-smectite interstratification were studied in samples belonging to the Argiles Plastiques formation of the Paris basin, by high-resolution transmission electron microscopy (HRTEM). Two original smectite phases, 1) beidellite with 1-nm-thick layers, and 2) beidellite-montmorillonite with 1.25-nm-thick layers, are progressively transformed into kaolinite-smectite mixed-layer minerals, and into kaolinite. As the percentage of kaolinite layers increases in the interlayered minerals, the kaolinite-smectite layer sequences, initially disordered, become locally more ordered, with the presence of KS and KKS units repeated 2 to 4 times (K = kaolinite layer, S = smectite layer). Two solid-state mechanisms seem to be responsible for the formation of kaolinite: 1) the transformation of 1 smectite layer into 1 kaolinite layer, denoted S → K, by stripping of a tetrahedral sheet and the adjacent interlayer region; 2) the intercalation of 1 kaolinite layer into smectite, denoted 0 (zero)→K. Structural and chemical incidences of these mechanisms are discussed.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Ahn, J.H. and Peacor, D.R., 1989 Illite/smectite from Gulf Coast shales: A reappraisal of transmission electron microscope images Clays Clay Miner 37 542546 10.1346/CCMN.1989.0370606.Google Scholar
Amouric, M. and Olives, J., 1991 Illitization of smectite as seen by high-resolution transmission electron microscopy Eur J Mineral 3 831835 10.1127/ejm/3/5/0831.CrossRefGoogle Scholar
Amouric, M. Patron, C. Casalini, L. and Giresse, P., 1995 7-Å Fe phase and its transformation in recent sediments: An HRTEM and AEM study Clays Clay Miner 43 446454 10.1346/CCMN.1995.0430408.CrossRefGoogle Scholar
Bertolino, S.R.A. Murray, H.H. and Depetris, P.J., 1991 Regular kaolinite/smectite (R1) from the Bermejo river basin, Argentina Clays Clay Miner 39 658660 10.1346/CCMN.1991.0390612.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W., 1975 The quantitative analysis of thin specimens J Microscopy 103 203207 10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Eggleton, R.A. and Banfield, J.F., 1985 The alteration of granitic biotite to chlorite Am Mineral 70 902910.Google Scholar
Jiang, W.T. Peacor, D.R. Merriman, R.J. and Roberts, B., 1990 Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite Clays Clay Miner 38 449468 10.1346/CCMN.1990.0380501.CrossRefGoogle Scholar
Maresch, W.V. Massone, H.J. and Czank, M., 1985 Ordered and disordered chlorite/biotite interstratifications as alteration products of chlorite N Jb Miner 152 79100.Google Scholar
Murakami, T. Sato, T. and Watanabe, T., 1993 Microstructure of interstratified illite/smectite at 123 K: A new method for HRTEM examination Am Mineral 78 465468.Google Scholar
Olives, J., 1985 Biotites and chlorites as interlayered biotitechlorite crystals Bull Mineral 108 635641.Google Scholar
Olives, J. and Amouric, M., 1984 Biotite chloritization by interlayer brucitization as seen by HRTEM Am Minerai 69 869871.Google Scholar
Olives, J. and Amouric, M., 1994 Transformation of smectite into illite and illite-smectite interstratification: HRTEM observations and lattice energies calculations 2B 12811282.Google Scholar
Olives, J. and Amouric, M., 1995 HRTEM study of the transformation of smectite into kaolinite Terra Nova 7, Abstract 252253.Google Scholar
Olives, J. Amouric, M. d. Fouquet, C. and Baronnet, A., 1983 Interlayering and interlayer slip in biotite as seen by HRTEM Am Mineral 68 754758.Google Scholar
Schultz, L.G. Shepard, A.O. Blackmon, P.D. and Starkey, H.C., 1971 Mixed-layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico Clays Clay Miner 19 137150 10.1346/CCMN.1971.0190302.CrossRefGoogle Scholar
Thiry, M., 1973 Les sédiments de l’éocène inférieur du Bassin de Paris et leurs relations avec la paléoaltération de la craie .Google Scholar
Thiry, M., 1991 Les argiles plastiques du bassin de Paris. Fontainebleau: Ecole des Mines, Livret guide d’excursion .Google Scholar
Thiry, M. Cavelier, C. and Trauth, N., 1977 Les sédiments de l’éocène inférieur du bassin de Paris et leurs relations avec la paléoaltération de la craie Sci Géol Bull 30 113128.Google Scholar
Thomas, A.R., 1989 A new mixed layer clay mineral. Regular 1:1 mixed layer kaolinite/smectite 69.Google Scholar
Triki, R. Thiry, M. Trauth, N. and Eberhart, J.P., 1973 Mise en évidence d’interstratifiés de type kaolinite-montmorillonite dans une argile du bassin de Paris C R Acad Sci Paris D 276 881884.Google Scholar
Veblen, D.R. and Ferry, J.M., 1983 A TEM study of the biotitechlorite reaction and comparison with petrologic observations Am Mineral 68 11601168.Google Scholar
Veblen, D.R. Guthrie, G.D. Livi, K.J.T. and Reynolds, R.C., 1990 Highresolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results Clays Clay Miner 38 113 10.1346/CCMN.1990.0380101.CrossRefGoogle Scholar
Wiewióra, A., 1971 A mixed-layer kaolinite-smectite from Lower Silesia, Poland Clays Clay Miner 19 415416 10.1346/CCMN.1971.0190610.CrossRefGoogle Scholar
Wilson, M.J. and Cradwick, P.D., 1972 Occurrence of interstratified kaolinite/montmorillonite in some Scottish soils Clay Miner 9 425437 10.1180/claymin.1972.009.4.08.CrossRefGoogle Scholar