Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-15T13:21:38.178Z Has data issue: false hasContentIssue false

The Thermodynamic Status of Compositionally-Complex Clay Minerals: Discussion of “Clay Mineral Thermometry—A Critical Perspective”

Published online by Cambridge University Press:  28 February 2024

Stephen U. Aja
Affiliation:
Department of Geology, Brooklyn College of the City, University of New York, 2900 Bedford Avenue, Brooklyn, New York 11210
Philip E. Rosenberg
Affiliation:
Department of Geology, Washington State University, Pullman, Washington 99164
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1996, The Clay Minerals Society

References

Ahn, J.H. and Peacor, D.R.. 1986. Transmission and analytical electron microscopy of the smectite-to-illite transmission. Clays & Clay Miner 34: 165179.Google Scholar
Ahn, J.H. and Buseck, P.R.. 1990. Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: image simulations and HRTEM imaging. Am Miner 70: 267275.Google Scholar
Aja, S.U.. 1989. A hydrothermal study of illite stability relationships between 25 and 250°C. [PhD thesis]. Pullman, Washington: Washington State University. 191 p.Google Scholar
Aja, S.U.. 1991. Illite equilibria in solutions: III. A re-interpretation of the data of Sass et al. (1987). Geochim Cosmochim Acta 55: 34313453.CrossRefGoogle Scholar
Aja, S.U.. 1995a. Estimates of mineral dissolution rates: a semi-empirical approach. Prog. & Abstr. V.M. Goldschmidt Conf. p 24.Google Scholar
Aja, S.U.. 1995b. Thermodynamic properties of some 2: 1 layer clay minerals from solution-equilibration data. Eur J Miner 7: 325333.CrossRefGoogle Scholar
Aja, S.U.. 1995c. Controls on illitization: A thermodynamic approach. In: OTI MN. and POSTMA G, editors, Geology of Deltas. Rotterdam: Balkema Publishers. p 209215.Google Scholar
Aja, S.U. and Rosenberg, P.E.. 1992. The thermodynamic status of compositionally-variable clay minerals: A discussion. Clays & Clay Miner 40: 292299.CrossRefGoogle Scholar
Aja, S.U., Rosenberg, P.E. and Kittrick, J.A.. 1991a. Illite equilibria in solutions: II. Phase relationships in the system K2O-Al2O3-SiO2-H2O. Geochim Cosmochim Acta 55: 13531364.CrossRefGoogle Scholar
Aja, S.U., Rosenberg, P.E. and Kittrick, J.A.. 1991b. Illite equilibria in solutions: II. Phase relationships in the system K2O-Al2O3-MgO-SiO2-H2O. Geochim Cosmochim Acta 55: 13651374.CrossRefGoogle Scholar
Amouric, M. and Olives, J.. 1991. Illitization of smectite as seen by high-resolution transmission electron microscopy. Eur J Miner 3: 831835.CrossRefGoogle Scholar
Anderson, G.M. and Crerar, D.A.. 1993. Thermodynamics in Geochemistry: The equilibrium model. New York: Oxford University Press. 588 p.CrossRefGoogle Scholar
Broxton, D.E., Bish, D.L. and Warren, R.G.. 1987. Distribution and chemistry of diagenetic minerals at Yucca Mountain, Nye County, Nevada. Clays & Clay Miner 35: 89110.CrossRefGoogle Scholar
Chamley, H.. (1989) Clay sedimentology. Berlin: Springer-Verlag. 623 p.CrossRefGoogle Scholar
Essene, E.J. and Peacor, D.R.. 1995. Clay mineral thermometry: A critical perspective. Clays & Clay Miner. 43: 540553.CrossRefGoogle Scholar
Garrels, R.M.. 1984. Montmorillonite/illite stability diagrams. Clays & Clay Miner 32: 161166.CrossRefGoogle Scholar
Guthrie, G.D. Jr. and Veblen, D.R.. 1989. High-resolution transmission electron microscopy of mixed-layer illite/smectite: computer simulations. Clays & Clay Miner. 37: 111.CrossRefGoogle Scholar
Guthrie, G.D. Jr. and Veblen, D.R.. 1990. Interpreting one-dimensional high-resolution transmission electron micrographs of sheet silicates by computer simulation. Am Miner 75: 276288.Google Scholar
Hemingway, B.S. and Robie, R.A.. 1984. Thermodynamic properties of zeolites: low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperature. Am Miner 69: 692700.Google Scholar
Hemley, J.J.. 1959. Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O. Am J Sci 257: 241270.CrossRefGoogle Scholar
Hemley, J.J., Montoya, J.W., Marineko, J.W. and Luce, R.W.. 1980. Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ Geol 25: 210228.CrossRefGoogle Scholar
Jiang, W.T., Peacor, D.R. and Essene, E.J.. 1990. Clay minerals in the MacAdams Sandstone, California: Implications for substitution of H3O+ and H2O and metastability of illite. Clays & Clay Min 41: 3545.Google Scholar
Kittrick, J.A.. 1983. Accuracy of several immiscible displacement liquids. Soil Sci Soc Am J 47: 10451047.CrossRefGoogle Scholar
Kittrick, J.A. and Peryea, F.J.. 1988. Experimental Validation of the monophase structure model for montmorillonite solubility. Soil Sci Soc Am J 52: 11991201.CrossRefGoogle Scholar
Kittrick, J.A. and Peryea, F.J.. 1989. The monophase model for Mg-saturated montmorillonite. Soil Sci Soc Am J 53: 292295.CrossRefGoogle Scholar
Klimentidis, R.E. and Mackinnon, I.D.R.. 1986. High-resolution electron microscopy of ordered mixed-layer clays. Clays & Clay Miner 34: 155164.CrossRefGoogle Scholar
Lippmann, F.. 1977. The solubility product of complex minerals, mixed-crystals and three layer clay minerals. N Jb Miner Abh 130: 243263.Google Scholar
Lippmann, F.. 1982. The thermodynamic status of clay minerals. Proc 7th Intl Clay Conf 1981, 475-485 p.Google Scholar
Lonker, S.W., Fitz Gerald, J.D., Hedenquist, J.W. and Walshe, J.W.. 1990. Mineral-fluid interactions in the Broadlands-Ohaaki Geothermal System, New Zealand. Am J Sci 290: 9951068.CrossRefGoogle Scholar
Macinnis, I.N., Ganor, J. and Lasaga, A.C.. 1995. Solubility and reaction kinetics of analcime and clinoptilolite at low temperatures. Prog and Abstr VM Goldschmidt Conf. p 66.Google Scholar
May, H.M., Kinniburgh, P.A., Helmke, P.A. and Jackson, M.L.. 1986. Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: kaolinites and smectites. Geochim Cosmochim Acta 50: 16671677.CrossRefGoogle Scholar
McDowell, S.D. and Elders, W.. 1980. Authigenic layer silicate minerals in borehole Elmore #1, Salton Sea Geothermal Field, California. Contrib Mineral Petrol 74: 293310.CrossRefGoogle Scholar
McDowell, S.D. and Elders, W.. 1983. Allogenic layer silicate minerals in borehole Elmore #1, Salton Sea Geothermal Field, California. Am Miner 68: 11461159.Google Scholar
Montoya, J.W. and Hemley, J.J.. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ Geol 70: 577594.CrossRefGoogle Scholar
Murphy, W.M., Prikryl, J.D. and Pabalan, R.T.. 1995. Reaction kinetics and reversibility of analcime dissolution at pH 9 and 25°C. EOS Trans. 76 (17), Spring Meet. Suppl. S102.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. and Tait, J.M.. 1985. The conversion of smectite to illite during diagenesis: evidence from some illitic clays from bentonites and sandstones. Mineral Mag 49: 393400.CrossRefGoogle Scholar
Parks, G.A.. 1990. Surface energy and adsorption at mineral/water interfaces: an introduction. In: Hochella, M.F. Jr., White, A.F., editors. Mineral-Water Interface Geochemistry, Reviews in Mineralogy 23: 133176.CrossRefGoogle Scholar
Primmer, T.J.. 1994. Some comments on the chemistry and stability of interstratified illite-smectite and the role of Ostwald-type processes. Clay Miner 29: 6368.CrossRefGoogle Scholar
Primmer, T.J., Warren, E.A., Sharma, B.K. and Atkins, M.P.. 1993. Experimental studies of diagenesis and weathering. In: Manning, D.A.C., Hall, P.L., Hughes, C.R., editors. Geochemistry of clay-pore fluid interaction. The Mineralogical Society Series 4. London: Chapman and Hall. p 161180.Google Scholar
Putnis, A.. 1992. Introduction to mineral sciences. Cambridge: Cambridge University Press. 375 p.CrossRefGoogle Scholar
Rosenberg, P.E., Kittrick, J.A. and Aja, S.U.. 1990. Mixed-layer illite/smectite: a multi-phase model. Am Miner 75: 11821185.Google Scholar
Sass, B.M., Rosenberg, P.E. and Kittrick, J.A.. 1987. The stability of illite/smectite during diagenesis: an experimental study. Geochim Cosmochim Acta 51: 21032115.CrossRefGoogle Scholar
Srodon, J. and Eberl, D.D.. 1984. Illite In: Bailey SW, editor. Micas, Reviews in Mineralogy. 13: 495544.Google Scholar
Srodon, J., Elsass, F., McHardy, W.J. and Morgan, D.J.. 1992. Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Mineral 27: 137158.CrossRefGoogle Scholar
Sverjensky, D.M., Hemley, J.J. and D'angelo, W.M.. 1991. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim Cosmochim Acta 55: 9891004.CrossRefGoogle Scholar
Vali, H., Hesse, R. and Köhler, E.E.. 1991. Combined freeze-etch replicas and HRTEM images as tools to study fundamental particles and multiphase nature of 2: 1 layer silicates. Am Miner 76: 19731984.Google Scholar
Vali, H., Hesse, R. and Martin, R.F.. 1994. A TEM-based definition of 2: 1 layer silicates and their interstratified constituents. Am Miner 79: 644653.Google Scholar
Veblen, D.R., Guthrie, G.D. Jr, Livi, K.J.T. and Reynolds, R.C. Jr. 1990. High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: experimental results. Clays & Clay Miner 38: 143.CrossRefGoogle Scholar
Warren, E.A. and Curtis, C.D.. 1989. The chemical composition of authigenic illite within two sandstone reservoirs as analyzed by ATEM. Clay Miner 24: 137156.CrossRefGoogle Scholar
Wilkin, R.T. and Barnes, H.L.. 1995. Solubilities of the zeolites analcime and Na-clinoptilolite at low temperatures. Prog & Abstr VM Goldschmidt Conference. 97 p.Google Scholar
Yates, D.M.. 1993. Experimental investigation of the formation and stability of endmember illite from 100 to 250°C and Pv,H2O. [PhD thesis]. Pullman, Washington: Washington State University. 224 p.Google Scholar
Yates, D.M. and Rosenberg, P.E.. 1993. Hydrothermal transformation of muscovite to endmember illite at 250°C and Pv,H2O. Geol Soc Am Abst with Prog 25. p 437.Google Scholar
Yates, D.M. and Rosenberg, P.E.. 199. Formation of end-member illite: revised multi-phase model. Prog and Abstr VM. Goldschmidt Conference. p 99.Google Scholar
Yau, Y.C., Peacor, D.R., Beane, R.E., Essene, E.J. and McDowell, S.D.. 1987. Microstructure, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California. Clays & Clay Miner 36: 110.Google Scholar