Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:46:10.256Z Has data issue: false hasContentIssue false

Thermal Characterization of Poly(Styrene Sulfonate)/Layered Double Hydroxide Nanocomposites

Published online by Cambridge University Press:  28 February 2024

Christopher O. Oriakhi
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331
Isaac V. Farr
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331
Michael M. Lerner
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Phase and morphological changes during thermolysis of Mg4Al2(OH)12CO3·nH2O and Zn6Al2(OH)16CO3·nH2O layered double hydroxides (LDH) and their nanocomposites with poly(styrene sulfonate) (PSS) are studied by X-ray powder diffraction (XRD), scanning and transmission electron micrography (SEM and TEM) and thermal analyses. Mg4Al2(OH)12CO3·nH2O and Mg2Al(OH)6[CH2CH(C6H4SO3)]·3H2O show comparable thermal stabilities: the layered structure is lost above 300 °C with the nucleation of the MgO phase at approximately 400 °C and the MgAl2O4 phase at approximately 800 °C Zn3Al(OH)8[CH2CH(C6H4SO3)]·nH2O undergoes complete oxidative pyrolysis of the polyanion by 500 °C. Crystalline oxide products are obtained at a temperature approximately 300 °C lower than that of thermolysis of Zn6Al2(OH)16CO3·nH2O. The SEM and TEM images show that the thermolysis of LDH carbonates produces dense aggregates containing microcrystalline particles, whereas Mg2Al(OH)6[CH2CH(C6H4SO3)]·3H2O forms a macroporous solid.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Aranda, P. and Ruiz-Hitsky, E.. 1992. Poly(ethylene oxide)-silicate intercalation materials. Chem Mater 4: 13951403.CrossRefGoogle Scholar
Carrado, K.A., Forman, J.E., Botto, R.E. and Winans, R.E.. 1993. Incorporation of phthalocyanines by cationic and anionic clays vis ion exchange and direct synthesis. Chem Mater 5: 472478.CrossRefGoogle Scholar
Cavani, F., Trifiro, F. and Vaccari, A.. 1992. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today 11: 173301.CrossRefGoogle Scholar
Challier, T. and Slade, R.T.C.. 1994. Nanocomposite materials: Polyaniline-intercalated layered double hydroxides. J Mater Chem 4: 367371.CrossRefGoogle Scholar
Chibwe, K. and Jones, W.. 1989. Intercalation of organic and inorganic anions into layered double hydroxides. J Chem Soc, Chem Commun: 926927.Google Scholar
Constantino, V.R.L. and Pinnavaia, T.J.. 1995. Basic properties of Mg2+1–x,Al3+x, layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions. Inorg Chem 34: 883892.CrossRefGoogle Scholar
DeRoy, A., Besse, J.P. and Bondot, P.. 1985. Structural approach and conductivity of lamellar hydroxides Zn2Cr(OH)6X·.nH2O (X = anion) by XANES, EXAFS and X-ray diffraction. Mater Res Bull 20: 10911098.CrossRefGoogle Scholar
Dutta, P.K. and Robins, D.S.. 1994. Pyrene sorption in organic-layered double-metal hydroxides. Langmuir 10: 18511856.CrossRefGoogle Scholar
Galasso, F.S.. 1970. Structure and properties of inorganic solids. Oxford: Pergamon Pr. 297 p.Google Scholar
Komarneni, S.. 1992. Nanocomposites. J Mater Chem 2: 12191230.CrossRefGoogle Scholar
Kopka, H., Beneke, K. and Lagaly, G.. 1988. Anionic surfactants between double metal hydroxide layers. J Colloid Interface Sci 123: 427436.CrossRefGoogle Scholar
Kuwahara, T., Onitsuka, O., Tagaya, H., Kadokawa, J. and Chiba, K.. 1994. Thermal characterization of the compound of p-to-luenesulfonate into a layered double hydroxide. J Incl Phenom Mol Recogn Chem 18: 5968.CrossRefGoogle Scholar
Lagadic, I., Leastic, A. and Clement, R.. 1992. Intercalation of polyethers into MPS3 (M=Mn, Cd) host lattice. J Chem Soc, Chem Commun: 13961397.Google Scholar
Lan, T. and Pinnavaia, T.J.. 1994. Clay-reinforced epoxy nanocomposites. Chem Mater 6: 22162219.CrossRefGoogle Scholar
Lemmon, J.P. and Lerner, M.M.. 1994. Preparation and characterization of nanocomposites of polyethers and molybdenum disulfide. Chem Mater 6: 207210.CrossRefGoogle Scholar
Lemmon, J.P. and Lerner, M.M.. 1995. Preparation of nanocomposites of poly(ethylene oxide) with TiS2. Solid State Commun 94: 533537.CrossRefGoogle Scholar
Messersmith, P.B. and Giannelis, E.P.. 1993. Polymer-layered silicate nanocomposites: in situ intercalative polymerization of ∊-caprolactone in layered silicates. Chem Mater 5: 10641066.CrossRefGoogle Scholar
Messersmith, P.B. and Stupp, S.I.. 1992. Synthesis of nanocomposites: Organoceramics. J Mater Res 7: 25992611.CrossRefGoogle Scholar
Messersmith, P.B. and Stupp, S.I.. 1995. High-temperature chemical and microstructural ransformations of a nanocomposite organoceramic. Chem Mater 7: 454460.CrossRefGoogle Scholar
Meyn, M., Beneke, K. and Lagaly, G.. 1990. Anion-exchange reactions of layered double hydroxides. Inorg Chem 29: 52015207.CrossRefGoogle Scholar
Ookubo, A., Kenta Ooi, A. and Hayashi, H.. 1993. Preparation and phosphate ion-exchange properties of a hydrotalcite-like compound. Langmuir 9: 14181422, and references contained therein.CrossRefGoogle Scholar
Oriakhi, C.O., Farr, I.V. and Lerner, M.M.. 1996. Incorporation of poly(acrylic acid), poly(vinylsulfonate) and poly(styrene-sulfonate) within layer double hydroxides. J. Mater Chem 6: 103107.CrossRefGoogle Scholar
Oriakhi, C. and Lerner, M.. 1995. Poly(pyrrole) and poly(thiophene)/clay nanocomposites via latex colloid interaction. Mater Res Bull 30: 723729.CrossRefGoogle Scholar
Ozin, G.A.. 1992. Nanochemistry: Synthesis in diminishing dimensions. Adv Mater 4: 612649.CrossRefGoogle Scholar
Park, I.Y., Kuroda, K. and Kato, C.. 1990. Direct synthesis of intercalation compounds between a layered double hydroxide and an anionic dye. J Chem Soc Dalton Trans: 30713074.CrossRefGoogle Scholar
Playle, A.C., Gunning, S.R. and Llewellyn, A.F.. 1974. The in vitro antacid and anti-pepsin activity of hydrotalcite. Pharm Acta Helv 49: 298302.Google ScholarPubMed
Raki, L., Rancorut, D.G. and Detellier, C.. 1995. Preparation, characterization, and mossbauer spectroscopy of organic anion intercalated pyroaurite-like layered double hydroxides. Chem Mater 7: 221224.CrossRefGoogle Scholar
Reichle, W.T.. 1985. Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J Catal 94: 547557.CrossRefGoogle Scholar
Ruiz-Hitsky, E.. 1993. Conducting polymers intercalated in layered solids. Adv Mater 5: 334340.CrossRefGoogle Scholar
Sato, T., Wakayoshi, T. and Shimada, M.. 1986. Adsorption of various anions by magnesium aluminum oxide (Mg0.7Al0.3O1.15). Ind Eng Chem Res 25: 89.CrossRefGoogle Scholar
Sugahara, Y., Yokoyama, N., Kuroda, K. and Kato, C.. 1988. AIN formation from a hydrotalcite-polyacrylonitrile intercalation compound by carbothermal reduction. Ceram Int 14: 163167.CrossRefGoogle Scholar
Tagaya, H., Sato, S., Morioka, H., Kodakawa, J., Karasu, M. and Chiba, K.. 1993. Preferential intercalation of isomers of naphthalenecarboxylate ions into the interlayer of layered double hydroxides. Chem Mater 5: 14311433.CrossRefGoogle Scholar
Whitesides, G.M., Mathias, J.P. and Seto, C.T.. 1991. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254: 13121319.CrossRefGoogle ScholarPubMed
Wu, J. and Lerner, M.M.. 1993. Structural, thermal, and electrical characterization of layered nanocomposites derived from Na-montmorillonite and polyethers. Chem Mater 5: 835838.CrossRefGoogle Scholar
Yun, S.K. and Pinnavaia, T.J.. 1995. Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem Mater 7: 348354.CrossRefGoogle Scholar