Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T19:59:23.890Z Has data issue: false hasContentIssue false

Thermal Behavior and Decomposition of Intercalated Kaolinite

Published online by Cambridge University Press:  28 February 2024

Magda Gábor
Affiliation:
Institute of Inorganic and Analytical Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary
Mária Tóth
Affiliation:
Research Laboratory of Geochemistry of the Hungarian Academy of Sciences, Budapest, Hungary
János Kristóf
Affiliation:
Department of Analytical Chemistry, University of Veszprém, H-8201, Veszprém, P.O. Box 158, Hungary
Gábor Komáromi-Hiller
Affiliation:
Institute of Inorganic and Analytical Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Intercalation complexes of a Hungarian kaolinite were prepared with hydrazine and potassium acetate. The thermal behavior and decomposition of the kaolinite-potassium acetate complex was studied by simultaneous TA-EGA, XRD, and FTIR methods. The intercalation complex is stable up to 300°C, and decomposition takes place in two stages after melting of potassium acetate intercalated in the interlayer spaces. Dehydroxylation occurred, in the presence of a molten phase, at a lower temperature than for the pure kaolinite. FTIR studies revealed that there is a sequence of dehydroxylation for the various OH groups of intercalated kaolinite. The reaction mechanism was followed up to 1000°C via identification of the gaseous and solid decomposition products formed: H2O, CO2, CO, C3H6O, intercalated phases with basal spacings of 14.1 Å, 11.5 Å, and 8.5 Å as well as elemental carbon, K4H2(CO3)3 · 1.5H2O, K2CO3 · 1.5H2O, and KAlSiO4.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Deeds, C. T., van Olphen, H. J., and Bradley, W. F. 1966 . Intercalation and interlayer hydration of minerals of the kaolinite group: Proc. Int. Clay Conf., Jerusalem 2: 183198.Google Scholar
Douglas, M. C., Ewan, Mac, and Wilson, M. J. 1980 . Crystal Structure of Clay Minerals and Their X-ray Identification, Mineralogical Society, London, 241242.Google Scholar
Fenoll Hach-Ali, P., and Weiss, A. 1969 . Estudio de la reacción de caolinita y N-metil formamida. Annales de la Real Sodièdad Española da Fisica y Quimica LXV, 769790.Google Scholar
Fernandez-Gonzales, M., Weiss, A., and Lagaly, G. 1976 . Über das verhalten nordwestspanischer Kaoline bei der Bildung von Einlogerungsverbindungen. Keram. Z. 28: 5558.Google Scholar
Gál, S., 1967. Die Methodik der Wasserdampf-Sorptionsmessungen. Berlin: Springer Verlag.CrossRefGoogle Scholar
Gábor, M., Pöppl, L., Izvekov, V., and Beyer, H. 1989 . Interaction of kaolinite with organic and inorganic alkali metal salts at 25–1300°C. Thermochim. Acta 148: 431438.CrossRefGoogle Scholar
Jackson, M. L., and Abdel-Kader, F. H. 1978 . Kaolinite intercalation procedure for all sizes and types with XRD spacing distinctive from other phyllosilicates. Clays & Clay Miner. 26: 8187.CrossRefGoogle Scholar
Juhász, Z., 1982. Adaption of thermal analysis for the study of water vapour adsorption isotherms. J. Thermal Anal. 25: 409422.CrossRefGoogle Scholar
Keller, W. D., and Haenni, R. P. 1978 . Effects of microsized mixtures of kaolin minerals on properties of kaolinites. Clays & Clay Miner. 26: 384396.CrossRefGoogle Scholar
Kristóf, J., Inczédy, J., Paulik, J., and Paulik, F. 1991 . Continuous and selective determination of water vapour evolved during thermal decomposition reactions. J. Thermal Anal. 37: 111120.CrossRefGoogle Scholar
Kristóf, J., and Inczédy, J. 1993 . Continuous determination of carbon dioxide evolved during thermal decomposition reactions. J. Thermal Anal. 40: 993998.CrossRefGoogle Scholar
Kristóf, J., Inczédy, J., and Mohácsi, G., 1990. Continuous determination of carbon monoxide evolved during thermal decomposition reactions. J. Thermal Anal. 36: 14011409.CrossRefGoogle Scholar
Lagaly, G., 1984. Clay organic interactions. Phil. Trans. R. Soc. Lond. A 311: 315332.Google Scholar
Ledoux, R. L., and White, J. L. 1964 . Infrared study of the OH groups in expanded kaolinite. Science 143: 244246.CrossRefGoogle ScholarPubMed
Range, K. J., Range, A., and Weiss, A. 1969 . Fire clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Conf., Tokyo, 1969, 1, Jerusalem: Israel University Press, 313.Google Scholar
Theng, B. K. G., Churchman, G. I., Whitton, I. S., and Claridge, G. G. C. 1984 . Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays & Clay Miner. 32: 249258.CrossRefGoogle Scholar
Thompson, J. G., 1985. Interpretation of solid state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates. Clays & Clay Miner. 33: 173180.CrossRefGoogle Scholar
van Olphen, H., 1963. An Introduction to Clay Colloid Chemistry, 2nd Ed. New York: John Wiley & Sons, 316 pp.Google Scholar
Weiss, A., Thielepape, W., Göring, R., Ritter, W., and Schafer, H. . Kaolinit-Einlagerungs-Verbindungen. Proc. Int. Clay Conf. Stockholm, I, Th. Rosenqvist and Graff-Peterson, P., 1963a eds. Oxford: Pergamon Press, 287305.Google Scholar
Weiss, A., Thielepape, W., and Orth, H. 1966 . Intercalation into kaolinite minerals. Proc. Int. Clay Conf. Jerusalem I, Jerusalem: Israel University Press, 277293.Google Scholar
Weiss, A., Thielepape, W., Ritter, W., Schafer, H., and Göring, G. 1963b . Zur Kenntnis von Hydrazin-Kaolinit. Z. Anorg. Allg. Chem. 320: 183204.CrossRefGoogle Scholar
Wiewiora, A., and Brindley, G. W. 1969 . Potassium acetate intercalation in kaolinite and its removal: Effect of material characteristics. Proc. Int. Clay Conf., Tokyo 1: 723733.Google Scholar