Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T22:23:48.631Z Has data issue: false hasContentIssue false

Terrestrial Perspective on Authigenic Clay Mineral Production in Ancient Martian Lakes

Published online by Cambridge University Press:  01 January 2024

Thomas F. Bristow*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Ralph E. Milliken
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The discovery of phyllosilicates in terrains of Noachian age (>3.5 Ga) on Mars implies a period in the planet’s history that was characterized by wetter, warmer conditions that may have been more hospitable for life than the cold and dry conditions prevalent today. More specific information about the original locations and mechanisms of clay mineral formation on Mars is not as well constrained, however, in part because the origin of particular clay minerals is often non-unique. For example, Fe and Mg smectite-bearing deposits on Mars may have formed in various environments, including the weathering profiles of basic volcanic rocks, impact-induced hydrothermal sites, or in bodies of standing water. The identification of lacustrine deposits on Mars is of great interest due to their potential for the preservation of organic material, but identifying any given suite of sedimentary rocks as such is difficult when limited to mineralogy and morphology derived from orbital data. Here, the processes and conditions leading to clay mineral formation in lakes and evaporative marine basins on Earth are reviewed, with a focus on the spatial and stratigraphic distribution of clays in these settings. The goal is to provide criteria to determine if certain Martian clay deposits are consistent with such an origin, which in turn will aid in the identification of possible ancient habitable environments on Mars.

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

References

Ahn, J.H. and Peacor, D.R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Clays and Clay Minerals 34 165179.Google Scholar
Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533.CrossRefGoogle Scholar
April, R.H., 1981 Clay petrology of the Upper Triassic/Lower Jurassic terrestrial strata of the Newark Supergroup, Connecticut Valley, USA Sedimentary Geology 29 283307.CrossRefGoogle Scholar
April, R.H., 1981 Trioctahedral smectite and interstratified chlorite-smectite in Jurassic strata of the Connecticut Valley Clays and Clay Minerals 29 3139.CrossRefGoogle Scholar
Badaut, D. and Risacher, F., 1983 Authigenic smectite on diatom frustules in Bolivian saline lakes Geochimica et Cosmochimica Acta 47 363375.CrossRefGoogle Scholar
Banfield, J.F. Jones, B.F. and Veblen, D.R., 1991 An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: 1 Weathering reactions in the volcanics. Geochimica et Cosmochimica Acta 55 27812793.CrossRefGoogle Scholar
Banfield, J.F. Jones, B.F. and Veblen, D.R., 1991 An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon 2. Diagenetic modification of the sedimentary assemblage. Geochimica et Cosmochimica Acta 55 27952810.CrossRefGoogle Scholar
Bell, J.F. III Morris, R.V. and Adams, J.B., 1993 Thermally altered palagonitic tephra: A spectral and process analog to the soils and dust of Mars Journal of Geophysical Research 98 33733385.CrossRefGoogle Scholar
Bellanca, A. Calvo, J.P. Censi, P. Neri, R. and Pozo, M., 1992 Recognition of Lake-Level Changes in Miocene Lacustrine Units, Madrid Basin, Spain — Evidence from Facies Analysis, Isotope Geochemistry and Clay Mineralogy Sedimentary Geology 76 135153.CrossRefGoogle Scholar
Berg-Madsen, V., 1983 High-alumina glaucony from the middle Cambrian of Oland and Bornholm, southern Baltoscandia Journal of Sedimentary Petrology 53 875893.Google Scholar
Bibring, J.P. Langevin, Y. Gendrin, A. Gondet, B. Poulet, F. Berthé, M. Soufflot, A. Arvidson, R. Mangold, N. Mustard, J. and Drossart, P. OMEGA team, 2005 Mars surface diversity as revealed by the OMEGA/Mars Express observations Science 307 15761581.CrossRefGoogle ScholarPubMed
Bibring, J.P. Arvidson, R.E. Gendrin, A. Gondet, B. Langevin, Y. Le Mouelic, S. Mangold, N. Morris, R.V. Mustard, J.F. Poulet, F. Quantin, C. and Sotin, C., 2007 Coupled ferric oxides and sulfates on the Martian surface Science 317 12061210.CrossRefGoogle ScholarPubMed
Birsoy, R., 2002 Formation of sepiolite-palygorskite and related minerals from solution Clays and Clay Minerals 50 736745.CrossRefGoogle Scholar
Bischoff, J.L. Fitts, J.P. and Fitzpatrick, J.A., 1997 Responses of sediment geochemistry to climate change in Owens Lake sediment An 800,000 Year Paleoclimatic Record from Core OL-92 317 3747.Google Scholar
Cabrol, N.A. and Grin, E.A., 1999 Distribution, classification and ages of Martian impact crater lakes Icarus 142 160172.CrossRefGoogle Scholar
Cabrol, N.A. Grin, E.A. and Dawidowicz, G., 1996 Ma’adim Vallis revisited through new topographic data: Evidence for an ancient intravalley lake Icarus 123 269283.CrossRefGoogle Scholar
Cabrol, N.A. Grin, E.A. Newsom, H.E. Landheim, R. and McKay, C.P., 1999 Hydrogeologic evolution of Gale Crater and its relevance to the exobiological exploration of Mars Icarus 139 235245.CrossRefGoogle Scholar
Calvo, J.P. Blanc-Valleron, M.M. Rodrigue-Arandia, J.P. Rouchy, J.M. and Sanz, M.E., 1999 Authigenic clay minerals in continental evaporitic environments Palaeoweathering, Palaeosurfaces and Related Continental Deposits 27 129151.Google Scholar
Carroll, A.R. and Bohacs, K.M., 1999 Stratigraphic classification of ancient takes: Balancing tectonic and climatic controls Geology 27 99102.2.3.CO;2>CrossRefGoogle Scholar
Carter, J. Poulet, F. Bibring, J.-P. and Murchie, S., 2010 Detection of hydrated silicates in crustal outcrops in the Northern Plains of Mars Science 328 16821686.CrossRefGoogle ScholarPubMed
Chamley, H., 1989 Clay Sedimentology New York Springer-Verlag 623.CrossRefGoogle Scholar
Christensen, P.R. Bandfield, J.L. Clark, R.N. Edgett, K.S. Hamilton, V.E. Hoefen, T. Kieffer, H.H. Kuzmin, R.O. Lane, M.D. Malin, M.C. Morris, R.V. Pearl, J.C. Pearson, R. Roush, T.L. Ruff, S.W. and Smith, M.D., 2000 Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water Journal of Geophysical Research 105 96329642.CrossRefGoogle Scholar
Christensen, P.R. Morris, R.V. Lane, M.D. Bandfield, J.L. and Malin, M.C., 2001 Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on Mars Journal of Geophysical Research 106 23,87323,885.CrossRefGoogle Scholar
Cohen, A.S., 2003 Paleolimnology: The History and Evolution of Lake Systems New York Oxford University Press 528.CrossRefGoogle Scholar
Cole, R.D. and Picard, M.D., 1978 Comparitive mineralogy of mearshore and offshore lacustrine lithofaces, Parachute Creek Member of the Green River Formation, Piceance Creek Basin, Colorado, and eastern Uinta Basin, Utah Geological Society of America Bulletin 89 14411454.2.0.CO;2>CrossRefGoogle Scholar
Crowell, J.C., 2003 Introduction to Geology of Ridge Basin, Southern California Evolution of Ridge Basin, southern California: An interplay of Sedimentation and Tectonics 367 115.Google Scholar
Cuevas, J. Vigil De La Villa, R. Ramirez, S. Petit, S. Meunier, A. and Leguey, S., 2003 Chemistry of Mg smectites in lacustrine sediments from the Vicalvaro sepiolite deposit, Madrid Neogene Basin (Spain) Clays and Clay Minerals 51 457472.CrossRefGoogle Scholar
Darragi, F. and Tardy, Y., 1987 Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes Chemical Geology 63 5972.CrossRefGoogle Scholar
Deb, S.P. and Fukuoka, M., 1998 Fe-illites in a proterozoic deep marine slope deposit in the Penganga Group of the Pranhita Godavari Valley: Their origin and environmental significance Journal of Geology 106 741749.CrossRefGoogle Scholar
Decarreau, A., 1980 Cristallogenese experimentale des smectites magnesiennes: Hectorite, stevensite Bulletin de Mineralogie 103 579590.CrossRefGoogle Scholar
Decarreau, A., 1985 Partitioning of divalent transition-elements between octahdedral sheets of trioctahedral smectites and water Geochimica et Cosmochimica Acta 49 15371544.CrossRefGoogle Scholar
Dekov, V.M. Kamenov, G.D. Stummeyer, J. Thiry, M. Savelli, C. Shanks, W.C. Fortin, D. Kuzmann, E. and Vertes, A., 2007 Hydrothermal nontronite formation at Eolo seamount (Aeolian volcanic arc, Tyrrhenian Sea) Chemical Geology 245 103119.CrossRefGoogle Scholar
Dekov, V.M. Cuadros, J. Shanks, W.C. and Koski, R.A., 2008 Deposition of talc, kerolite-smectite, smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies Chemical Geology 247 171194.CrossRefGoogle Scholar
Deocampo, D.M., 2004 Authigenic clays in East Africa: Regional trends and paleolimnology at the Plio-Pleistocene boundary, Olduvai Gorge, Tanzania Journal of Paleolimnology 31 19.CrossRefGoogle Scholar
Deocampo, D.M., 2005 Evaporative evolution of surface waters and the role of aqueous CO2 in magnesium silicate precipitation: Lake Eyasi and Ngorongoro Crater, northern Tanzania South African Journal of Geology 108 493504.CrossRefGoogle Scholar
Deocampo, D.M. Blumenschine, R.J. and Ashley, G.M., 2002 Wetland diagenesis and traces of early hominids, Olduvai Gorge, Tanzania Quaternary Research 57 271281.CrossRefGoogle Scholar
Deocampo, D.M. Cuadros, J. Wing-Dudek, T. Olives, J. and Amouric, M., 2009 Saline lake diagenesis as revealed by coupled minerogy and geochemistry of multiple ultrafine clay phases: Pliocene Olduvai Gorge, Tanzania American Journal of Science 309 834868.CrossRefGoogle Scholar
Drever, J.I., 1997 The Geochemistry of Natural Waters: Surface and Groundwater Environments New Jersey, USA Prentice Hall 436.Google Scholar
Dyni, J.R., 1976 Trioctahedral smectite in the Green River Formation, Duchesne County, Utah US Geological Survey Professional Paper 967 14.Google Scholar
Eberl, D.D., 1984 Clay mineral formation and transformation in rocks and soils Philosophical Transactions of the Royal Society of London Series A — Mathematical Physical and Engineering Sciences 311 241257.Google Scholar
Eberl, D.D. Velde, B. and McCormick, T., 1993 Synthesis of illite-smectite at Earth surface temperatures and high pH Clay Minerals 28 4960.CrossRefGoogle Scholar
Ehlmann, B.L. Mustard, J.F. Fassett, C.I. Schon, S.C. Head, J.W. Marais, D.J.D. Grant, J.A. and Murchie, S.L., 2008 Clay minerals in delta deposits and organic preservation potential on Mars Nature Geoscience 1 355358.CrossRefGoogle Scholar
Ehlmann, B.L. Mustard, J.F. Murchie, S.L. Poulet, F. Bishop, J.L. Brown, A.J. Calvin, W.M. Clark, R.N. Marais, D.J.D. Milliken, R.E. Roach, L.H. Roush, T.L. Swayze, G.A. and Wray, J.J., 2008 Orbital identification of carbonate-bearing rocks on Mars Science 322 18281832.CrossRefGoogle ScholarPubMed
Ehlmann, B.L. Mustard, J.F. Swayze, G.A. Clark, R.N. Bishop, J.L. Poulet, F. Marais, D.J.D. Roach, L.H. Milliken, R.E. Wray, J.J. Barnouin-Jha, O. and Murchie, S.L., 2009 Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration Journal of Geophysical Research-Planets 114 E00D08.CrossRefGoogle Scholar
Ehlmann, B.L. Mustard, J.F. and Murchie, S.L., 2010 Geologic setting of serpentine deposits on Mars Geophysical Research Letters 37 L06201.CrossRefGoogle Scholar
Fassett, C.I. and Head, J.W. III, 2005 Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region Geophysical Research Letters 32 L14201.CrossRefGoogle Scholar
Fassett, C.I. and Head, J.W., 2008 Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology Icarus 198 3756.CrossRefGoogle Scholar
Furquim, S.A.C. Graham, R.C. Barbiero, L. Neto, J.P.D. and Valles, V., 2008 Mineralogy and Genesis of Smectites in an Alkaline-Saline Environment of Pantanal Wetland, Brazil Clays and Clay Minerals 56 579595.CrossRefGoogle Scholar
Gac, J.Y. Droubi, A. Fritz, B. and Tardy, Y., 1977 Geochemical behaviour of silica and magnesium during the evaporation of waters in Chad Chemical Geology 19 215228.CrossRefGoogle Scholar
Gendrin, A. Mangold, N. Bibring, J.-P. Langevin, Y. Gondet, B. Poulet, F. Bonello, G. Quantin, C. Mustard, J. Arvidson, R. and LeMouélic, S., 2005 Sulfates in Martian layered terrains: The OMEGA/Mars Express view Science 307 15871591.CrossRefGoogle ScholarPubMed
Grant, J.A. and Parker, T.J., 2002 Drainage evolution in the Margaritifer Sinus region, Mars Journal of Geophysical Research — Planets 107 E95066.CrossRefGoogle Scholar
Grant, J.A. Irwin, R.P. Grotzinger, J.P. Milliken, R.E. Tornabene, L.L. McEwen, A.S. Weitz, C.M. Squyres, S.W. Glotch, T.D. and Thomson, B.J., 2008 HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars Geology 36 195198.CrossRefGoogle Scholar
Grin, E.A. and Cabrol, N.A., 1997 Limnologic analysis of Gusev crater paleolake, Mars Icarus 130 461474.CrossRefGoogle Scholar
Hagerty, J.J. and Newsom, H.E., 2003 Hydrothermal alteration at the Lonar Lake impact structure, India: implications for impact cratering on Mars Meteoritics and Planetary Science 38 365381.CrossRefGoogle Scholar
Harder, H., 1972 Role of magnesium in formation of smectite minerals Chemical Geology 10 3139.CrossRefGoogle Scholar
Harder, H., 1976 Nontronite synthesis at low-temperatures Chemical Geology 18 169180.CrossRefGoogle Scholar
Hay, R.L. and Kyser, T.K., 2001 Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene lake in northern Tanzania Geological Society of America Bulletin 113 15051521.2.0.CO;2>CrossRefGoogle Scholar
Hay, R.L. Guldman, S.G. Matthews, J.C. Lander, R.H. Duffin, M.E. and Kyser, T.K., 1991 Clay mineral diagenesis in Core Km-3 of Searles Lake, California Clays and Clay Minerals 39 8496.CrossRefGoogle Scholar
Hay, R.L. Hughes, R.E. Kyser, T.K. Glass, H.D. and Liu, J., 1995 Magnesium-rich clays of the Meerschaum mines in the Amboseli Basin, Tanzania and Kenya Clays and Clay Minerals 43 455466.CrossRefGoogle Scholar
Hillier, S., 1993 Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland Clays and Clay Minerals 41 240259.CrossRefGoogle Scholar
Hover, V.C. and Ashley, G.M., 2003 Geochemical signatures of paleodepositional and diagenetic environments: A STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzania Clays and Clay Minerals 51 231251.CrossRefGoogle Scholar
Hover, V.C. Walter, L.M. Peacor, D.R. and Martini, A.M., 1999 Mg-smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California Clays and Clay Minerals 47 252268.CrossRefGoogle Scholar
Jamoussi, F. Ben Aboud, A. and Lopez-Galindo, A., 2003 Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits Clay Minerals 38 187199.CrossRefGoogle Scholar
Johnson, J. Bell, J.F. III Cloutis, E. Staid, M. Farrand, W. McCoy, T. Rice, M. Wang, A. and Yen, A., 2007 Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars Geophysical Research Letters 34 L13202.CrossRefGoogle Scholar
Jones, B.F., 1986 Clay mineral diagenesis in lacustrine sediments Studies in Diagenesis 1578 291300.Google Scholar
Jones, B.F. Deocampo, D.M., Drever, J.I. Holland, H.D. and Turekian, K.K., 2003 Geochemistry of Saline Lakes Freshwater Geochemistry, Weathering and Soils. Treatise on Geochemistry New York Elsevier 393424.CrossRefGoogle Scholar
Jones, B.F. and Galán, E., 1988 Sepiolite and palygorskite Hydrous Phyllosilicates (Exclusive of Micas) 19 631674.CrossRefGoogle Scholar
Jones, B.F. and Spencer, R.J., 1999 Clay mineral diagenesis at Great Salt Lake, Utah, USA Reykjavik, 5th International Symposium on the Geochemistry of the Earth’s Surface 293297.Google Scholar
Jones, B.F. and Weir, A.H., 1983 Clay-Minerals of Lake Abert, an Alkaline, Saline Lake Clays and Clay Minerals 31 161172.CrossRefGoogle Scholar
Keller, W.D., 1958 Glauconitic mica in the Morrison Formation in Colorado Clays and Clay Minerals 5 120128.CrossRefGoogle Scholar
Khoury, H.N. Eberl, D.D. and Jones, B.F., 1982 Origin of magnesium clays from the Amargosa Desert, Nevada Clays and Clay Minerals 30 327336.CrossRefGoogle Scholar
Klingelhöfer, G. Morris, R.V. Bernhardt, B. Schröder, C. Rodionov, D.S. de Souza, P.A. Jr. Yen, A. Gellert, R. Evlanov, E.N. Zubkov, B. Foh, J. Bonnes, U. Kankeleit, E. Gütlich, P. Ming, D.W. Renz, F. Wdowiak, T. Squyres, S.W. and Arvidson, R.E., 2004 Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer Science 306 17401745.CrossRefGoogle ScholarPubMed
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., 1999 Synthesis of smectite clay minerals: A critical review Clays and Clay Minerals 47 529554.CrossRefGoogle Scholar
Kossovskaya, A.G. and Drits, V.A., 1970 Variability of micaceous minerals in sedimentary rocks Sedimentology 15 83101.CrossRefGoogle Scholar
Larsen, D., 2008 Revisiting silicate authigenesis in the Pliocene-Pleistocene Lake Tecopa beds, southeastern California: Depositional and hydrological controls Geosphere 4 612639.CrossRefGoogle Scholar
Le Deit, L. Le Mouelic, S. Bourgeois, O. Combe, J.P. Mege, D. Sotin, C. Gendrin, A. Hauber, E. Mangold, N. and Bibring, J.P., 2008 Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: Identification and geological interpretation Journal of Geophysical Research — Planets 113 E07001.CrossRefGoogle Scholar
Link, M.H., 2003 Depositional systems and sedimentary facies of the Miocene-Pliocene Ridge Basin Group, Ridge Basin, southern California Evolution of Ridge Basin, southern California: An interplay of sedimentation and tectonics 367 1787.Google Scholar
Malin, M.C. and Edgett, K.S., 2003 Evidence for persistent flow and aqueous sedimentation on early Mars Science 302 19311934.CrossRefGoogle ScholarPubMed
Martini, A.M. Walter, L.M. Lyons, T.W. Hover, V.C. and Hansen, J., 2002 Significance of early-diagenetic water-rock interactions in a modern marine siliciclastic/evaporite environment: Salina Ometepec, Baja California Geological Society of America Bulletin 114 10551069.2.0.CO;2>CrossRefGoogle Scholar
Mayayo, M.J. Bauluz, B. and Lopez, J.M.G., 2000 Variations in the chemistry of smectites from the Calatayud Basin (NE Spain) Clay Minerals 35 365374.CrossRefGoogle Scholar
Mees, F., 2001 An occurrence of lacustrine Mg-smectite in a pan of the southwestern Kalahari, Namibia Clay Minerals 36 547556.CrossRefGoogle Scholar
Menkin, K.M., 1997 Climatic signals in clay mineralogy and grain-size variation in Owens Lake core OL-92, southest California An 800,000 Year Paleoclimatic Record from Core OL-92 317 2536.Google Scholar
Meunier, A., 2005 Clays Berlin Springer 472.Google Scholar
Meunier, A. and El Albani, A., 2007 The glauconite-Fe-illite-Fe-smectite problem: a critical review Terra Nova 19 95104.CrossRefGoogle Scholar
Milliken, R.E. and Bish, D.L., 2010 Sources and sinks of clay minerals on Mars Philosophical Magazine 90 22932308.CrossRefGoogle Scholar
Milliken, R.E. Swayze, G.A. Arvidson, R.E. Bishop, J.L. Clark, R.N. Ehlmann, B.L. Green, R.O. Grotzinger, J.P. Morris, R.V. Murchie, S.L. Mustard, J.F. and Weitz, C., 2008 Opaline silica in young deposits on Mars Geology 36 847850.CrossRefGoogle Scholar
Milliken, R.E. Fisher, W.W. and Hurowitz, J., 2009 Missing salts on early Mars Geophysical Research Letters 36 L11202.CrossRefGoogle Scholar
Milliken, R.E. Grotzinger, J.P. and Thomson, B.J., 2010 Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater Geophysical Research Letters 37 L04201.CrossRefGoogle Scholar
Milliken, R.E. Bristow, T. and Bish, D.L., 2011 Diagenesis of clay minerals on Mars and implications for the Mars Science Laboratory rover 42nd Lunar and Planetary Science Conference.Google Scholar
Millot, G., 1964 Geologie des Argiles Paris Masson 510.Google Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378.Google Scholar
Morrill, C. Small, E.E. and Sloan, L.C., 2001 Modeling orbital forcing of lake level change: Lake Gosiute (Eocene), North America Global and Planetary Change 29 5776.CrossRefGoogle Scholar
Morris, R.V. Agresti, D.G. Lauer, H.V. Newcomb, J.A. Shelfer, T.D. and Murali, A.V., 1989 Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mössbauer studies of super paramagnetic (nanocrystalline) hematite Journal of Geophysical Research 94 27602778.CrossRefGoogle Scholar
Morris, R.V. Klingelhofer, G. Schroder, C. Rodionov, D.S. Yen, A. Ming, D.W. de Souza, P.A. Fleischer, I. Wdowiak, T. Gellert, R. Bernhardt, B. Evlanov, E.N. Zubkov, B. Foh, J. Bonnes, U. Kankeleit, E. Gutlich, P. Renz, F. Squyres, S.W. and Arvidson, R.E., 2006 Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills Journal of Geophysical Research 111 E02S13.CrossRefGoogle Scholar
Morris, R.V. Ruff, S.W. Gellert, R. Ming, D.W. Arvidson, R.E. Clark, B.C. Golden, D.C. Siebach, K. Klingelhofer, G. Schroder, C. Fleischer, I. Yen, A.S. and Squyres, S.W., 2010 Identification of carbonate-rich outcrops on Mars by the Spirit Rover Science 329 421424.CrossRefGoogle ScholarPubMed
Murchie, S.L. Mustard, J. Ehlmann, B. Milliken, R.E. Bishop, J. McKeown, N. Noe Dobrea, E. Seelos, F. Buczkowski, D. Wiseman, S. Arvidson, R. Wray, J. Swayze, G. Clark, R. Des Marais, D. McEwen, A. and Bibring, J.-P., 2009 A synthesis of Martian aquous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter Journal of Geophysical Research 114 E00D06.CrossRefGoogle Scholar
Mustard, J.F. Murchie, S.L. Pelkey, S.M. Ehlmann, B.L. Milliken, R.E. Grant, J.A. Bibring, J.P. Poulet, F. Bishop, J. Dobrea, E.N. Roach, L. Seelos, F. Arvidson, R.E. Wiseman, S. Green, R. Hash, C. Humm, D. Malaret, E. McGovern, J.A. Seelos, K. Clancy, T. Clark, R. Des Marais, D. Izenberg, N. Knudson, A. Langevin, Y. Martin, T. McGuire, P. Morris, R. Robinson, M. Roush, T. Smith, M. Swayze, G. Taylor, H. Titus, T. and Wolff, M., 2008 Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument Nature 454 305309.CrossRefGoogle ScholarPubMed
Osinski, G.R., 2005 Hydrothermal activity associated with the Ries impact event, Germany Geofluids 5 202220.CrossRefGoogle Scholar
Osterloo, M.M. Hamilton, V.E. Bandfield, J.L. Glotch, T.D. Baldridge, A.M. Christensen, P.R. Tornabene, L.L. and Anderson, F.S., 2008 Chloride-bearing materials in the southern highlands of Mars Science 319 16511654.CrossRefGoogle ScholarPubMed
Parry, W.T. and Reeves, C.C., 1966 Lacustrine glauconitic mica from pluvial Lake Mound, Lynn and Terry Counties, Texas American Mineralogist 51 229235.Google Scholar
Pedro, G. Carmouze, J.P. and Velde, B., 1978 Peloidal nontronite formation in recent sediments of Lake Chad Chemical Geology 23 139149.CrossRefGoogle Scholar
Poulet, F. Bibring, J.P. Mustard, J.F. Gendrin, A. Mangold, N. Langevin, Y. Arvidson, R.E. Gondet, B. Gomez, C. and Omega, T., 2005 Phyllosilicates on Mars and implications for early martian climate Nature 438 623627.CrossRefGoogle ScholarPubMed
Pozo, M. and Casas, J., 1999 Origin of kerolite and associated Mg clays in palustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain) Clay Minerals 34 395418.CrossRefGoogle Scholar
Remy, R.R. and Ferrell, R.E., 1989 Distribution and origin of analcime in marginal lacustrine mudstones of the Green River Formation, South-central Uinta Basin, Utah Clays and Clay Minerals 37 419432.CrossRefGoogle Scholar
Roach, L. Mustard, J. Swayze, G. Milliken, R.E. Bishop, J. Murchie, S. and Lichtenberg, K., 2010 Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris Icarus 206 253268.CrossRefGoogle Scholar
Saez, A. Ingles, M. Cabrera, L. and de las Heras, A., 2003 Tectonic-palaeoenvironmental forcing of clay-mineral assemblages in nonmarine settings: the Oligocene-Miocene As Pontes Basin (Spain) Sedimentary Geology 159 305324.CrossRefGoogle Scholar
Sarrazin, P. Blake, D. Feldman, S. Chipera, S. Vaniman, D. and Bish, D., 2005 Field deployment of a portable X-ray diffraction/X-ray flourescence instrument on Mars analog terrain Powder Diffraction 20 128133.CrossRefGoogle Scholar
Schwenzer, S.P. and Kring, D.A., 2009 Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars Geology 37 10911094.CrossRefGoogle Scholar
Setti, M. Marinoni, L. and Lopez-Galindo, A., 2004 Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica Clay Minerals 39 405421.CrossRefGoogle Scholar
Siffert, B., 1962 Quelques réactions de la silice en solution: la formation des argiles Mémoires du Service de la Carte Géologique d’Alsace et de Lorraine 21 186.Google Scholar
Singer, A. and Stoffers, P., 1980 Clay mineral diagenesis in two East African lake sediments Clay Minerals 15 291307.CrossRefGoogle Scholar
Singer, R.B., 1982 Spectral evidence for the mineralogy of high-albedo soils and dust on Mars Journal of Geophysical Research 87 10,15910,168.CrossRefGoogle Scholar
Smith, P.R., 1982 Paleolimnology of Miocene lakes in Ridge Basin, southern California Evolution of Ridge Basin, southern California: An interplay of sedimentation and tectonics 367 259264.Google Scholar
Squyres, S.W. Arvidson, R.E. Ruff, S. Gellert, R. Morris, R.V. Ming, D.W. Crumpler, L. Farmer, J.D. Des Marais, D.J. Yen, A. McLennan, S.M. Calvin, W. Bell, J.F. III Clark, B.C. Wang, A. McCoy, T.J. Schmidt, M.E. and de Souza, P.A. Jr., 2008 Detection of silica-rich deposits on Mars Science 320 10631067.CrossRefGoogle ScholarPubMed
Summons, R.E. Amend, J.P. Bish, D.L. Buick, R. Cody, G.D. Des Marais, D.J. Dromart, G. Eigenbrode, J.L. Knoll, A.H. and Sumner, D.Y., 2011 Preservation of Martian organic and environmental records: Final report of the Mars Biosignature Working Group Astrobiology 11 157181.CrossRefGoogle ScholarPubMed
Surdam, R.C. Sheppard, R.A., Sand, L.B. and Mumpton, F.A., 1978 Zeolites in saline, alkaline-lake deposits Natural Zeolites, Occurrence, Properties, Use Oxford, UK Pergamon Press 145174.Google Scholar
Tettenhorst, R. and Moore, G.E., 1978 Stevensite oolites from Green River Formation of Central Utah Journal of Sedimentary Petrology 48 587594.Google Scholar
Torres-Ruiz, J. Lopez-Galindo, A. Gonzalez-Lopez, J.M. and Delgado, A., 1994 Geochemistry of Spanish sepiolite-palygorskite deposits: Genetic considerations based on trace elements and isotopes Chemical Geology 112 221245.CrossRefGoogle Scholar
Tosca, N.J. and Knoll, A.H., 2009 Juvenile chemical sediments and the long term persistence of water at the surface of Mars Earth and Planetary Science Letters 286 379386.CrossRefGoogle Scholar
Tosca, N. Mclennan, S. Clark, B. Grotzinger, J. Hurowitz, J. Knoll, A. Schroder, C. and Squyres, S., 2005 Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum Earth and Planetary Science Letters 240 122148.CrossRefGoogle Scholar
Turner, C.E. and Fishman, N.S., 1991 Jurassic Lake T’oo’dichi’: A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau Geological Society of America Bulletin 103 538558.2.3.CO;2>CrossRefGoogle Scholar
Velde, B. and Meunier, A., 2008 The Origin of Clay Minerals in Soils and Weathered Rocks Berlin Springer 405.CrossRefGoogle Scholar
Weaver, C.E. and Beck, K.C., 1977 Miocene of the SE United States: a model for chemical sedimentation in a peri-marine environment Amsterdam Elsevier 234.Google Scholar
Weaver, C.E., 1989 Clays, Muds, and Shales Amsterdam Elsevier 820.Google Scholar
Webster, D.M. and Jones, B.F., 1994 Paleoenvironmental implications of lacustrine clay minerals from the Double Lakes Formation, Southern High Plains, Texas Sedimentology and Geochemistry of Modern and Ancient Saline Lakes 50 159172.CrossRefGoogle Scholar
Wray, J.J. Murchie, S.L. Squyres, S.W. Seelos, F.P. and Tornabene, L.L., 2009 Diverse aqueous environments on ancient Mars revealed in the southern highlands Geology 37 10431046.CrossRefGoogle Scholar
Wray, J.J. Milliken, R.E. Dundas, C. Swayze, G. Andrews-Hanna, J. Baldridge, A. Bishop, J. Ehlmann, B. Murchie, S. Clark, R. Seelos, F. Tornabene, L. and Squyres, S., 2010 Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars Journal of Geophysical Research 116 E01001.Google Scholar