Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T19:49:52.620Z Has data issue: false hasContentIssue false

Synthesis of Smectite from Volcanic Glass at Low Temperature

Published online by Cambridge University Press:  28 February 2024

Katsutoshi Tomita
Affiliation:
Institute of Earth Sciences, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890, Japan
Hisanori Yamane
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Sendai-shi 980, Japan
Motoharu Kawano
Affiliation:
Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Smectite and zeolites were formed from a volcanic glass as the products of reaction with NaOH solution at 90°C and 100°C under atmospheric pressure. Formation conditions of smectite and various zeolites were determined by the ratio of the amounts of volcanic glass (g) to NaOH (g) in the solution. Smectite was formed under the condition that the values of weight of volcanic glass (g)/(NaOH(g)/40) are between 0.5 and 6. Fe was an important constituent of the octahedral layer of smectite.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Bowen, N. L. and Tuttle, O. F., 1949 The system MgO-Al2O3-H2O Bull. Geol. Soc. Am. 60 439460 10.1130/0016-7606(1949)60[439:TSM]2.0.CO;2.CrossRefGoogle Scholar
Dibble, W. E. Jr. and Tiller, W. A., 1981a Non-equilibrium water/rock interaction. I. Model for interface-controlled reactions Geochim. Cosmochim. Acta 45 7992 10.1016/0016-7037(81)90265-9.CrossRefGoogle Scholar
Dibble, W. E. Jr. and Tiller, W. A., 1981b Kinetic model of zeolite paragenesis in tuffaceous sediments Clays & Clay Minerals 29 323330 10.1346/CCMN.1981.0290502.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., 1964 The infrared spectra of layer silicates Spectrochim. Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Farmer, V. V., Krishnamurti, G S R and Huang, P. M., 1991 Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O system at 23°C and 89°C in a calcareous environment Clays & Clay Minerals 39 561570 10.1346/CCMN.1991.0390601.CrossRefGoogle Scholar
Nemecz, E., 1981 Clay Minerals, Part III: Genesis of clay Budapest Akadémiai Kiadό.Google Scholar
Noll, W., 1930 Synthese von montmorilloniten Chem. Erde 10 129154.Google Scholar
Noll, W., 1935 Mineralbildung im system Al2O3-SiO2-H2O Neues Jahrb. Mineral. Geol. Beilage Bd. A 70 65115.Google Scholar
Noll., W., 1936 Ueber die bildungsbedingungen von kaolin, montmorillonit, sericit, pyrophyllit, und analcim Minera-log. Petrog. u. Mitt. 48 210246.CrossRefGoogle Scholar
Roy, D. M. and Roy, R., 1955 Synthesis and stability of minerals in the system of MgO-Al2O3-SiO2-H2O Amer. Mineral. 40 147178.Google Scholar
Sand, L. B., Roy, R. and Osborn, E. F., 1953 Stability relations of some minerals in the system Na2O-Al2O3-H2O Bull. Geol. Soc. Am. 64 14691470.Google Scholar
Sheppard, R. A. and Gude, A. J., 1968 3rd, Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, California U. S. Geol. Surv. Prof. Pap. 597 138.Google Scholar
Sheppard, R. A. and Gude, A. J., 1969 3rd, Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California U. S. Geol. Surv. Prof. Pap. 634 134.Google Scholar
Sheppard, R. A. and Gude, A. J., 1973 3rd, Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohame County, Arizona U. S. Geol. Surv. Prof. Pap. 830 136.Google Scholar
Sudo, T. and Matsuoka, M., 1959 Artificial crystallization of volcanic glass to sodalite and a zeolite structure Geochim. et Cosmochim. Acta 17 15 10.1016/0016-7037(59)90071-7.CrossRefGoogle Scholar
Tomita, K., 1970 Syntheses montmorillonite and vermiculite-like minerals from sericite and pyrophyllite Jour. Japan. Assoc. Min. Pet. Econ. Geol. 63 109121 10.2465/ganko1941.63.109.Google Scholar
Tomita, K. and Onishi, K., 1976 Clay minerals in the Shirasu “especially from the viewpoint of the collapse foreknowledge of the Shirasu cliff” Jour. Clay Sci. Soc. Japan 16 5662.Google Scholar
Tomita, K., Yamashita, H. and Oba, N., 1969 Artificial crystallization of volcanic glass to sodium and potassium form of chabazite at room pressure Jour. Japa. Assoc. Min. Pet. Econ. Geol. 62 8089 10.2465/ganko1941.62.80.Google Scholar
von Sedleckij, J., 1937 Genesis der minerals von bodenkolloiden der montmorillonit gruppe Comptes Rendus (doklady) de I’Academie des Sciences de I’URSS XVII 7 375377.Google Scholar
Yoder, H. S., 1952 The MgO-Al2O3-SiO2-H2O system and related metamorphic fades Am. J. Sci. 250 569627.Google Scholar