Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T17:17:50.011Z Has data issue: false hasContentIssue false

Synthesis of Kaolinite with a High Level of Fe3+ for Al Substitution

Published online by Cambridge University Press:  01 January 2024

Iñaki Iriarte
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain HydrASA, UMR 6532, CNRS University of Poitiers, 40 Av. du Recteur Pineau, 86022 Poitiers, France
Sabine Petit
Affiliation:
HydrASA, UMR 6532, CNRS University of Poitiers, 40 Av. du Recteur Pineau, 86022 Poitiers, France
F. Javier Huertas*
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
Saverio Fiore
Affiliation:
GAMLab — Institute of Methodologies for Environmental Analyses — CNR 85050 Tito Scalo (PZ), Italy
Olivier Grauby
Affiliation:
CRMC2-CNRS Campus de Luminy, Case 913, Marseille Cedex, France
Alain Decarreau
Affiliation:
HydrASA, UMR 6532, CNRS University of Poitiers, 40 Av. du Recteur Pineau, 86022 Poitiers, France
José Linares
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fe-rich kaolinites were synthesized at 225°C in distilled water from gels with different Fe/Al ratios (0.15, 0.25, 0.35) and with Si/(Al + Fe) = 2. X-ray diffraction patterns of the reaction products showed that kaolinite was the only long-range crystalline phase synthesized. Analytical electron microscopy analyses of individual particles and Fourier transform infrared spectra indicated that Fe3+ was isomorphously incorporated into the kaolinite octahedral sheet and that tetrahedral substitution did not occur. The Fe content hosted in the synthetic kaolinites was similar to that incorporated into its corresponding starting gel. The highest Fe content in the particles reached 30 mol.% of the octahedral occupancy. Increases in the b parameter are proportional to increases in Fe for Al substitution. The extent of isomorphic substitution of Al by Fe is the highest ever reported for both natural and synthetic samples. At the nano-scale, there is no evidence of discontinuity in the solid-solution between the Si2Al2O7 and Si2Al1.4Fe0.6O7 end-members, such as short-range disorder or clustering of Fe and Al in domains.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2005

References

Angel, B.R. Richards, K. and Jones, J.P.E., (1975) The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions, and defects generated by irradiation Proceedings of the International Clay Conference 1975 297304.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification 1123.Google Scholar
Balan, E. Allard, T. Boizot, B. Morin, G. and Muller, J.P., (2000) Quantitative measurement of paramagnetic Fe3+ in kaolinite Clays and Clay Minerals 48 439445 10.1346/CCMN.2000.0480404.Google Scholar
Brindley, G.W. and Porter, A.R.D., (1978) Occurrence of dickite in Jamaica-ordered and disordered varieties American Mineralogist 63 554562.Google Scholar
Brindley, G.W. Chih-Chun, K. Harrison, J.L. Lipsicas, M. and Raythatha, R., (1986) Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.Google Scholar
Calvert, C.S., (1981) Chemistry and mineralogy of iron substituted kaolinite in natural and synthetic systems .Google Scholar
Cliff, G. and Lorimer, G.W., (1975) The quantitative analysis of thin specimens Journal of Microscopy 103 203207 10.1111/j.1365-2818.1975.tb03895.x.Google Scholar
Collins, D.R. and Catlow, C.R.A., (1991) Energy minimization hydrogen-atom positions at kaolinite Acta Crystallographica B47 678682 10.1107/S010876819100561X.Google Scholar
Dahlgren, R.A., Amonette, J.E. and Zelazny, L.W., (1994) Quantification of allophane and imogolite Quantitative Methods in Soil Mineralogy 430451.Google Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., (1987) Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidising conditions Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.Google Scholar
De Kimpe, C.R. Kodama, H. and Rivard, R., (1981) Hydrothermal formation of kaolinite-like product from noncrystalline aluminosiliate gels Clays and Clay Minerals 29 446450 10.1346/CCMN.1981.0290605.Google Scholar
Delineau, T. Allard, T. Muller, J.P. Barrès, O. Yvon, J. and Cases, J.M., (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays and Clay Minerals 42 308320 10.1346/CCMN.1994.0420309.Google Scholar
Delvaux, B. Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., (1989) Spectroscopic study of the nontronite→kaolinite hydrothermal transformation. Application to a weathering sequence Fe-smectite→kaolinite Clay Minerals 24 617632 10.1180/claymin.1989.024.4.05.Google Scholar
Farmer, V.C. and Farmer, V.C., (1974) The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331365 10.1180/mono-4.15.Google Scholar
Fialips, C.I. Petit, S. Decarreau, A. and Beaufort, D., (2000) Influence of synthesis pH on kaolinite crystallinity and surface properties Clays and Clay Minerals 48 173184 10.1346/CCMN.2000.0480203.Google Scholar
Gaines, R.V. Skinner, H.C.W. Foord, E.E. Mason, B. and Rosenzweig, A., (1997) Dana’s New Mineralogy New York John Wiley & Sons, Inc..Google Scholar
Gaite, J.M. Ermakoff, P. and Muller, J.P., (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite Physics and Chemistry of Minerals 20 242247 10.1007/BF00208137.Google Scholar
Gaite, J.M. Ermakoff, P. Allard, T.h. and Muller, J.P., (1997) Paramagnetic Fe3+: A sensitive probe for disorder in kaolinite Clays and Clay Minerals 45 496505 10.1346/CCMN.1997.0450402.Google Scholar
Guinier, A. and Guinier, A., (1956) Diffraction par les cristaux de très petite taille Théorie et Technique de la Radiocristallographie 462465.Google Scholar
Hinckley, D.N., (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.Google Scholar
Huertas, F.J. Fiore, S. Huertas, F. and Linares, J., (1999) Experimental study of hydrothermal formation of kaolinite Chemical Geology 156 171190 10.1016/S0009-2541(98)00180-6.Google Scholar
Iriarte, I., (2003) Formación de minérales de la arcilla en el sistema SiO2-Al2O3-Fe2O3-MgO-Na2O-H2O entre 150 y 225°C .Google Scholar
Mackenzie, R.C. and Mackenzie, R.C., (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets Differential Thermal Analysis London Academic Press 497551.Google Scholar
Martin, F. Petit, S. Decarreau, A. Ildefonse, P. Grauby, O. Beziat, D. Parseval, P. and Noack, Y., (1998) Ga/Al substitution in synthetic kaolinites and smectites Clay Minerals 33 231241 10.1180/000985598545598.Google Scholar
Meads, R.E. and Maiden, P.S., (1975) Electron-spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Minerals 10 313345 10.1180/claymin.1975.010.5.01.Google Scholar
Mendelovici, E. Yariv, S.H. and Villalva, R., (1979) Iron-bearing kaolinite in Venezuelan laterites. I. Infrared spectroscopy and chemical dissolution evidence Clay Minerals 14 323331 10.1180/claymin.1979.014.4.08.Google Scholar
Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., (1980) Iron in kaolinites: II. The relationship between kaolinite crystallinity and iron content Clay Minerals 15 113 10.1180/claymin.1980.015.1.01.Google Scholar
Muller, J.P. Calas, G., Bundy, M. Murray, H.H. and Harvey, C.C., (1993) Genetic significance of paramagnetic centers in kaolinites Keller Kaolin 90 Symposium Boulder, Colorado The Clay Minerals Society 261289.Google Scholar
Muller, J.P. Manceau, A. Calas, G. Allard, T. Ildefonse, P. and Hazemann, J.L., (1995) Crystal chemistry of kaolinite and Fe-Mn oxides: relation with formation conditions of low temperature systems American Journal of Sciences 295 11151155.Google Scholar
Petit, S. and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.Google Scholar
Petit, S. Decarreau, A. Mosser, C. Ehret, G. and Grauby, O., (1995) Hydrothermal synthesis (250°C) of copper-substituted kaolinites Clays and Clay Minerals 43 482494 10.1346/CCMN.1995.0430413.Google Scholar
Plançon, A. and Tchoubar, C., (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction — II. Nature and proportion of defects in natural kaolinites Clays and Clay Minerals 25 436450 10.1346/CCMN.1977.0250610.Google Scholar
Rieder, M. Guidotti, C.V. Sassi, F.P. and Weiss, Z., (1992) Muscovites: d060 versus d331,060 spacing: its use for geobarometric purposes European Journal Mineralogy 4 843845 10.1127/ejm/4/4/0843.CrossRefGoogle Scholar
Rodrique, L. Poncelet, G. and Herbillon, A., (1972) Importance of the silica subtraction process during the hydrothermal kaolinitization of amorphous silico-aluminas Proceedings of the International Clay Conference, Madrid 853885.Google Scholar
Russell, J.D. and Clark, D.R., (1978) The effect of Fe for Si substitution on the b dimension of nontronite Clay Minerals 13 133137 10.1180/claymin.1978.013.2.01.Google Scholar
Schroeder, P.A. and Pruett, R.J., (1996) Fe ordering in kaolinite: Insights from 29Si and Al MAS NMR spectroscopy American Mineralogist 81 2638 10.2138/am-1996-1-204.Google Scholar
Stone, W.E.E. and Torres Sánchez, R.M., (1988) Nuclear magnetic resonance spectroscopy applied to minerals. Part 6. Structural iron in kaolinite as viewed by proton magnetic resonance Journal of the Chemical Society, Faraday Transactions I 84 117132 10.1039/f19888400117.Google Scholar
Tomura, S. Shibasaki, Y. Mizuta, H. and Kitamura, M., (1985) Growth conditions and genesis of spherical and platy kaolinite Clays and Clay Minerals 33 200206 10.1346/CCMN.1985.0330305.Google Scholar
WWW-Mincryst, Crystallographic Database for Minerals and their Structural Analogues (2003).Google Scholar