Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T11:48:08.247Z Has data issue: false hasContentIssue false

Synthesis and Properties of Hexacyanoferrate Interlayered in Hydrotalcite. I. Hexacyanoferrate(II)

Published online by Cambridge University Press:  28 February 2024

Hans Christian Bruun Hansen
Affiliation:
Chemistry Department, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, 1871, Copenhagen V, Denmark
Christian Bender Koch
Affiliation:
Physics Department, Building 307, Technical University of Denmark, DK-2800 Lyngy, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrotalcite (HT) interlayered with hexacyanoferrate(II) ions ([Mg4.62Al1.52(OH)12][(Fe(CN)6)0.30-(CO3)0.29]) has been synthesized from the carbonate-HT ([Mg4.52Al1.50(OH)12][(CO3)0.77]) through double ion exchange reactions, and the products have been studied by chemical and physical methods. Mössbauer spectroscopy shows that hexacyanoferrate(II) is held rigidly in the interlayer by electrostatic forces and is characterized by a singlet at 0.01 mm s−1 at 80 K. X-ray diffraction shows an increase of the basal spacing (d003 from 0.78 to 1.1 nm following exchange. Hexacyanoferrate(II) in the interlayer was oxidized to hexacyanoferrate(III) (up to 20%) by dioxygen on dehydrating the interlayer either by drying at 70°C or by washing with nonaqueous solvents like acetone or ethanol. The CN (ν6) band of hexacyanoferrate(II) and (III) is found at 2036 cm−1 and 2112 cm−1, respectively. The presence of an absorption band at 2080 cm−1, assigned to free cyanide anions in the interlayer, suggests that the hexacyanoferrate(II,III) complexes are not inert in the interlayer, cyanide ligands being substituted with either water or hydroxyls. Oxidation and ligand exchange of the hexacyanoferrate(II) are also indicated by Mössbauer spectroscopy.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Allmann, R., (1970) Double layer structures with brucitelike layer-ions [Me(II)1–xMe(III)x(OH)2]x+: Chimia 24, 99108 (in German).Google Scholar
Ayers, J. B., and Waggoner, W. H., (1971) Synthesis and properties of two series of heavy metal hexacyanoferrates: J. Inorg. Nucl. Chem. 33, 721733.CrossRefGoogle Scholar
Caglioti, V., Sartori, G., and Scrocco, M., (1957) Infrared spectra of hexacoordinated cyanide complexes: J. Inorg. Nucl. Chem. 8, 8692.Google Scholar
Carrado, K. A., and Kostapapas, A., (1988) Layered double hydroxides (LDHs): Solid State Ionics 26, 7786.CrossRefGoogle Scholar
Castle, J. E., Epler, D. C., and Peplow, D. B., (1976) ESCA investigation of iron-rich protective films on aluminium brass condenser tubes: Corros. Sci. 16, 145157.CrossRefGoogle Scholar
Cavalcanti, F. A. P., Schutz, A., and Biloen, P., (1987) Interlayer accessibility in layered double-metal hydroxides: in Preparation of Catalysts IV, Delmon, B., Grange, P., Jacobs, P. A., and Poncelet, G., eds., Elsevier, Amsterdam , 165174.Google Scholar
Crovisier, J. L., Thomassin, J. H., Juteau, T., Eberhart, J. P., Touray, J. C., and Baillif, P., (1983) Experimental seawater-basaltic glass interaction at 50°C: Study of early developed phases by electron microscopy and X-ray photo-electron spectrometry: Geochim. Cosmochim. Acta 47, 377387.CrossRefGoogle Scholar
Dows, D. A., Haim, A., and Wilmarth, W. K., (1961) Infrared spectroscopic detection of bridging cyanide groups: J. Inorg. Nucl. Chem. 21, 3337.CrossRefGoogle Scholar
Dutta, P. K., and Puri, M., (1989) Anion exchange in lithium aluminate hydroxides: J. Phys. Chem. 93, 376381.CrossRefGoogle Scholar
Emschwiller, G., (1954) Infrared spectra of ferrocyanide and ferricyanide salts and the composition of Prussian blue: Compt. Rend. 238, 14141416 (in French).Google Scholar
Giannelis, E. P., Nocera, D. G., and Pinnavaia, T. J., (1987) Anionic photocatalysts supported in layered double hydroxides: Intercalation and photophysical properties of a ruthenium complex anion in synthetic hydrotalcite: Inorg. Chem. 26, 203205.CrossRefGoogle Scholar
Greenwood, N. N., and Gibbs, T. C., (1971) Mössbauer Spectroscopy: Chapman and Hall, London, 659 pp.Google Scholar
Hansen, H. C. B., (1990) Clay minerals with anion exchange properties. Synthesis and characterization of pyroaurite-type double-metal hydroxides containing iron(II, III), manganese(III) or chromium(III): Ph.D. thesis, Chemistry Department, Royal Vet. and Agricult. Univ., Copenhagen, 118 pp. (in Danish).Google Scholar
Hansen, H.C.B., and Taylor, R. M., (1991) The use of glycerol intercalates in the exchange of CO32– with SO42–, NO3 or Cl in pyroaurite-type compounds: Clay Miner. 26, 311327.CrossRefGoogle Scholar
Hipps, K. W., Dunkle, E., and Mazur, U., (1988) Adsorption of ferricyanide ion on alumina: Langmuir 4, 463469.CrossRefGoogle Scholar
Idemura, S., Suzuki, E., and Ono, Y., (1989) Electronic state of iron complexes in the interlayer of hydrotalcite-like materials: Clays & Clay Minerals 37, 553557.CrossRefGoogle Scholar
Itaya, K., Chang, H.-C., and Uchida, I., (1987) Anion-exchanged hydrotalcite-like-clay-modified electrodes: Inorg. Chem. 26, 624626.CrossRefGoogle Scholar
Kikkawa, S., and Koizumi, M., (1982) Ferrocyanide anion bearing Mg, Al hydroxide: Mat. Res. Bull. 17, 191198.CrossRefGoogle Scholar
Kortüm, P., Braun, W., and Herzog, G., (1963) Prinzip und Messmethodik der diffusen Reflexionsspektroskopie: Angew: Chem. 75, 653661.CrossRefGoogle Scholar
Kubelka, P., (1948) New contributions to the optics of intensely light-scattering materials: Part I. J. Opt. Soc. Am. 38, 448457.CrossRefGoogle Scholar
Kubelka, P., and Munk, F., (1931) Ein Beitrag zur Optik der Farbanstriche: Z. Tech. Phys. 12, 593601.Google Scholar
Larsen, S., (1949) An apparatus for the determination of small quantities of carbonate: Acta Chem. Scand. 3, 967970.CrossRefGoogle Scholar
Ludi, A., and Güdel, H. U., (1973) Structural chemistry of polynuclear transition metal cyanides: Struct. Bond. 14, 121.CrossRefGoogle Scholar
Mazur, U., and Hipps, K. W., (1979) An inelastic electron tunneling spectroscopy study of the adsorption of NCS–1, OCN–1, and CN–1 from water solution by Al2O3: J. Phys. Chem. 83, 27732777.CrossRefGoogle Scholar
Mendiboure, A., and Schöllhorn, R., (1986) Formation and anion exchange reactions of layered transition metal hydroxides [Ni1–xMx](OH)2(CO3)x/2(H2O)z (M = Fe, Co): Rev. Chim. Min. 23, 819827.Google Scholar
Meyn, M., Beneke, K., and Lagaly, G., (1990) Anion-exchange reactions of layered double hydroxides: Inorg. Chem. 29, 52015207.CrossRefGoogle Scholar
Miyata, S., (1983) Anion-exchange properties of hydrotalcite-like compounds: Clays & Clay Minerals 31, 305311.CrossRefGoogle Scholar
Miyata, S., and Hirose, T., (1978) Adsorption of N2, O2, CO2, and H2 on hydrotalcite-like system: Mg2+ – Al3+ – Fe(CN)64–: Clays & Clay Minerals 26, 441447.CrossRefGoogle Scholar
Miyata, S., and Kumura, T., (1973) Synthesis of new hydrotalcite-like compounds and their physico-chemical properties: Chem. Letter, 843848.CrossRefGoogle Scholar
Newsham, M. D., Giannelis, E. P., Pinnavaia, T. J., and Nocera, D. G., (1988) The influence of guest-host interactions on the excited-state properties of dioxorhenium(V) ions in intracrystalline environments of complex-layered oxides: J. Am. Chem. Soc. 110, 38853891.CrossRefGoogle Scholar
Olabe, J. A., and Zerga, H. O., (1983) Thermal decomposition of the pentacyanoaquoferrate(II) ion in aqueous solution: Inorg. Chem. 22, 41564158.CrossRefGoogle Scholar
O'Neill, G., Misra, C., and Chen, A. S. C., (1989) Method for reducing the amount of anionic metal ligand complex in a solution: U.S. Patent 4,867,882.Google Scholar
Papp, S., Kvintovics, P., Nagy, F., and Vertes, A., (1975) Mössbauer, infrared and NMR spectroscopic studies on the solutions of some alkali and phosphonium cyanoferrates: Acta Chim. Acad. Scient. Hung. 87, 343352.Google Scholar
Raven, M., and Self, P. G., (1988) Manipulation of powder X-ray diffraction data: CSIRO Div. Soils Tech. Mem. 30.Google Scholar
Reichle, W. T., (1985) Catalytic reactions by thermally activated, synthetic, anionic clay minerals: J. Catal. 94, 547557.CrossRefGoogle Scholar
Schoonheydt, R. A., (1982) Ultraviolet and visible light spectroscopy: in Advanced Techniques for Clay Mineral Analysis, Fripiat, J. J., ed., Elsevier, Amsterdam , 163189.Google Scholar
Shaw, B. R., Deng, Y., Strillacci, F. E., Carrado, K. A., and Fessehaie, M. G., (1990) Electrochemical surface analysis of nonconducting solids: Ferricyanide and phenol as electrochemical probes of the surfaces of layered double hydroxide anion-exchanging clays: J. Electrochem. Soc. 137, 31363143.CrossRefGoogle Scholar
Stampfl, P. P., (1969) A basic iron(II)-iron(III) carbonate: Corros. Sci. 9, 185187 (in German).CrossRefGoogle Scholar
Taylor, H. F. W., (1973) Crystal structures of some double hydroxide minerals: Mineral. Mag. 39, 377389.CrossRefGoogle Scholar
Wertheim, G. K., (1971) Mössbauer Effect: Principles and Applications: Academic Press, New York, 116 pp.Google Scholar
Wilde, R. E., Ghosh, S. N., and Marshall, B. J., (1970) The Prussian blues: Inorg. Chem. 9, 25122516.CrossRefGoogle Scholar