Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T19:12:47.592Z Has data issue: false hasContentIssue false

Synthesis and Properties of Heat-Stable Expanded Smectite and Vermiculite

Published online by Cambridge University Press:  01 July 2024

R. H. Leoppert Jr.
Affiliation:
Departments of Crop and Soil Sciences and Chemistry, Michigan State University, East Lansing, Michigan 48824
M. M. Mortland
Affiliation:
Departments of Crop and Soil Sciences and Chemistry, Michigan State University, East Lansing, Michigan 48824
T. J. Pinnavaia
Affiliation:
Departments of Crop and Soil Sciences and Chemistry, Michigan State University, East Lansing, Michigan 48824
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When aqueous dispersions of Na+-smectite or n-butylammonium-vermiculite react with sulfate salts of Fe(II), Co(II), or Ni(II) bipyridyl or 1, 10-phenanthroline complexes in excess of the cation-exchange capacities, intersalated phases with spacings of about 29.5 Å are obtained. Thermal decomposition of the intersalated complex cations affords expanded phases with a d(001) spacing near 18 Å for the smectites and near 28 Å for the vermiculites. These phases are stable to temperatures of at least 550°C. Nitrogen surface areas of the fired products are as high as 400 m2/g.

Резюме

Резюме

Когда водные дисперсии Na+-смектита или n-бутил-аммониевого вермикулита реагируют с сульфатными солями Fe(II), Со(ІІ), или Ni(ІІ)-бипиридиловыми, или 1,10-фенантролиновыми комплексами сверх катионных обменных способностей, образуются межсолевые фазы с промежутками около 29,5 Å. В результате термальной декомпозиции катионов межсолевого комплекса образуются расширенные фазы с промежутками d (001) около 18 Å для смектитов и около 28 Å для вермикулитов. Эти фазы стабильны к температуре по крайней мере до 550°С. Азотные поверхностные площади прокаленных продуктов достигают 400 м2/г.

Resümee

Resümee

Wenn wäßrige Dispersionen von Na+-Smektit oder n-Butylammonium-Vermiculit mit Sulfaten von Fe(II), Co(II), oder Ni(II) bipyridyl oder 1,10-Phenanthroiinkompiexen über die Kationenaustauschkapazitäten hinaus reagieren, werden intersalierte Phasen mit Netzabständen von 29,5 Å erhalten. Thermischer Abbau der intersalierten komplexen Kationen ergibt ausgedehnte Phasen mit einem d(001) Abstand von fast 18 Å für die Smektiten und fast 28 Å für die Vermiculite. Diese Phasen sind bis auf Temperaturen von mindestens 550°C stabil. Stickstoff-Oberflächen der gefeuerten Produkte gehen bis auf 400 m2/g hinauf.

Résumé

Résumé

Lorsque des dispersions aqueuses de smectite-Na+ ou de n-butylammonium-vermiculite-réagissent avec des complexes de sels de sulfate de Fe(II), Co(II), ou Ni(II) bipyridyl ou de 1,10-phenanthroline en excès des capacités d’échange de cations, des phases intersalatées avec des espacements d'environ 29,5 Å sont obtenues. La décomposition thermale des cations du complexe intersalaté permet des phases dilatées avec un espacement d(001) près de 18 Å pour les smectites et près de 28 Å pour les vermiculites. Les phases sont stables jusqu’à des températures d'au moins 550°C. Les régions superficielles de nitrogène des produits calcinés sont aussi élevées que 400 m2/g.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Footnotes

1

Journal Article No. 8740. Michigan Agricultural Experiment Station. Work partially supported by National Science Foundation Grant No. CHE 76-80370.

References

Barnhisel, R. I. (1977) Chlorites and hydroxy interlayered vermiculite and smectite: In Minerals in Soil Environments, Soil Science Society of America, Madison, Wisconsin, 331356.Google Scholar
Barrer, R. M. and MacLeod, D. M. (1951) Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkylammonium montmorillonites: Trans. Faraday Soc. 51, 12901300.CrossRefGoogle Scholar
Berkheiser, V. E. and Mortland, M. M. (1977) Hectorite complexes with Cu(II) and Fe(II)-1,10-phenanthroline chelates: Clays & Clay Minerals 25, 105112.CrossRefGoogle Scholar
Clementz, D. M. and Mortland, M. M. (1974) Properties of reduced charge montmorillonite: tetra-alkylammonium ion exchange forms: Clays & Clay Minerals 22, 223229.CrossRefGoogle Scholar
Knudson, M. I. and McAtee, J. L. (1973) The effect of cation exchange of tris (ethylenediamine) cobalt (III) for sodium on nitrogen sorption by montmorillonite: Clays & Clay Minerals 21, 1926.CrossRefGoogle Scholar
Lahav, N., Shani, U., and Shabtai, J. (1978) Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum-montmorillonite: Clays & Clay Minerals 26, 107115.CrossRefGoogle Scholar
Mortland, M. M. and Berkheiser, V. E. (1976) Triethylene-diamine-clay complexes as matrices for adsorption and catalytic reactions: Clays & Clay Minerals 24, 6063.CrossRefGoogle Scholar
Ross, G. J. and Mortland, M. M. (1966) A soil beidellite: Soil Sci. Soc. Am. Proc. 30, 337343.CrossRefGoogle Scholar
Shabtai, J., Frydman, N., and Lazar, R. (1976) Synthesis and catalytic properties of a 1,4-diazabicyclo(2,2,2) octanemontmorillonite system—a novel type of molecular sieve: Proc. 6th Int. Congr. Catal. B5, 17.Google Scholar
Traynor, M. F., Mortland, M. M., and Pinnavaia, T. J. (1978) Ion exchange and intersalation reactions of hectorite with tris-bipyridyl metal complexes: Clays & Clay Minerals 26, 318326.CrossRefGoogle Scholar
Walker, G. F. (1960) Macroscopic swelling of vermiculite crystals in water: Nature 187, 312313.CrossRefGoogle Scholar
Yamanaka, S. and Brindley, G. W. (1979) High surface area solids obtained by reaction of montmorillonite with zirconyl chloride: Clays & Clay Minerals (in press).CrossRefGoogle Scholar