Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:36:01.827Z Has data issue: false hasContentIssue false

Swelling of Montmorillonite in Polar Organic Liquids

Published online by Cambridge University Press:  01 July 2024

S. Olejnik
Affiliation:
Department of Soil Science and Plant Nutrition, Institute of Agriculture, University of Western Australia, Nedlands, W.A. 6009
A. M. Posner
Affiliation:
Department of Soil Science and Plant Nutrition, Institute of Agriculture, University of Western Australia, Nedlands, W.A. 6009
J. P. Quirk
Affiliation:
Department of Soil Science and Plant Nutrition, Institute of Agriculture, University of Western Australia, Nedlands, W.A. 6009
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The crystalline and osmotic swelling of Na-, Cs-, Mg- and Ca-montmorillonite has been measured in dimethyl sulphoxide and in formamide, N-methyl formamide, dimethyl formamide, N-methyl acetamide and dimethyl acetamide. These liquids have similar dipole moments but their relative permittivities vary appreciably from values less than water to values greater than water.

Na-montmorillonite exhibits osmotic swelling (diffuse double layer development −d(001) ≫ 19 Å) in formamide and N-methyl formamide and Cs gives osmotic swelling behavior in formamide. Cs-montmorillonite in the crystalline swelling region give spacings greater than those found for water with all liquids. Mg- and Ca-montmorillonite did not give spacings greater than 19 Å in any of the liquids studied.

The swelling behavior of montmorillonite is affected by relative permittivity but for liquids with a similar relative permittivity methyl substitution in the molecule may prevent the development of diffuse double layers on the particle surfaces.

Résumé

Résumé

Le gonflement cristallin et osmotique de montmorillonites Na, Cs, Mg, et Ca, a été mesuré dans le diméthylsulfoxyde, la formamide, la N méthylformamide, la diméthylformamide, la N méthylacétamide et la diméthylacétamide. Ces liquides ont des moments dipolaires voisins, mais leur permittivité relative varie d’une façon appréciable de valeurs inférieures à des valeurs supérieures à celle de l’eau.

La montmorillonite Na montre un gonflement osmotique (développement d’une double couche diffuse — d (001) ≫ 19 Å) dans la formamide et la N méthylformamide, et l’argile Cs a un comportement de gonflement osmotique dans la formamide. La montmorillonite Cs donne, avec tous les liquides, dans la région de gonflement cristallin, des espacements plus grands que ceux qui sont trouvés avec l’eau. Les montmorillonites Mg et Ca ne donnent pas d’espacements supérieurs à 19 Å dans aucun des liquides étudiés.

Le comportement gonflant de la montmorillonite est affecté par la permittivité relative, mais pour les liquides qui ont une permittivité relative semblable, la méthyl substitution dans la molécule peut empêcher le développement de doubles couches diffuses à la surface des particules.

Kurzreferat

Kurzreferat

Die kristalline und osmotische Quellung von Na-, Cs-, Mg- und Ca-Montmorillonit wurde in Dimethylsulphoxid und in Formamid, N-Methylformamid, Dimethylformamid, N-Methylacetamid und Dimethylacetamid gemessen. Diese Flüssigkeiten haben ähnliche Dipolmomente, aber ihre Dielektrizitätskonstanten variieren erheblich schwischen Werten, die geringer und solchen, die größer sind als die des Wassers.

Na-Montmorillonit zeigt osmotische Quellung (Entwicklung einer diffusen Doppelschicht — d (001) ≫ 19 Å) in Formamid und N-Methylformamid und Cs ergibt osmotisches Quellungsverhalten in Formamid. Cs-Montmorillonit weist im Bereich der kristallinen Quellung mit allen Flüssigkeiten Schichtabstände auf, die größer als die mit Wasser gefundenen sind. Mg- und Ca-Montmorillonit ergaben mit allen untersuchten Flüssigkeiten keine Schichtabstände über 19 Å.

Das Quellungsverhalten von Montmorillonit wurde durch die Dielektrizitätskonstante beeinflußt, jedoch kann für Flüssigkeiten mit ähnlicher Dielektrizitätskonstante Methylsubstitution im Molekül die Ausbildung einer diffusen Doppelschicht an den Teilchenoberflächen verhindern.

Резюме

Резюме

Измеряют кристаллическое и осмотическое разбухание Na-, Cs- Mg- и Са-монт- мориллонитов в диметилсульфоксиде и в формамиде, в N-метилформамиде, в диметил- формамиде, в N-метилаиетамиде и в диметилацетамиде. Эти жидкости имеют одинаковые дипольные моменты, но их сравнительные диэлектрические проницаемости значительно различаются от числовых значений ниже воды до числовых значений выше воды.

Na-монтмориллонит выявляет осмотическое разбухание в формамиде и N-метилформамиде (развивается диффундирование двойных слоев — d(001) ≫ 19Å), a Cs выявляет поведение осмотического разбухания в формамиде. В области кристаллического разбухания Cs-монтмориллонит образует большие расстояния между атомами во всех этих жидкостях, чем в воде. Mg- и Са-монтмориллониты не дали расстояний более, чем 19А в экспериментальных жидкостях.

Ha поведение разбухания монтмориллонита влияет диэлектрическая проницаемость, но в жидкостях с тождественной диэлектрической проницаемостью замена метила в молекуле может предотвратить развитие диффудированных двойных слоев на поверхностях частиц.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1974

References

Alexander, R., Ko, E. F. C. Mac, Y. C. and Parker, A. J., (1967) Solvation of Ions—XI: Solubility products and instability constants in water, methanol, formamide, dimethylformamide, dimethylacetamide, dimethyl sulphoxide, acetonitrile and hexamethylphosphorotriamide J. Am. Chem. Soc. 89 37033712.CrossRefGoogle Scholar
Barshad, I., (1952) Factors affecting the interlayer expansion of vermiculite and montmorillonite with organic substances Soil Sci. Soc. Am. Proc. 16 176182.CrossRefGoogle Scholar
Bass, S. J., Nathan, W. I., Meighan, R. M. and Cole, R. H., (1964) Dielectric properties of alkyl amides—II. Liquid dielectric constant and loss J. Phys. Chem. 68 509515.CrossRefGoogle Scholar
Dorsey, N. A., (1940) Properties of Ordinary Water-Substance American Chemical Soc., Monograph Series New York Reinhold.Google Scholar
Edwards, D. G., Posner, A. M. and Quirk, J. P., (1965) Repulsion of chloride ions by negatively charged clay surfaces—II: Monovalent cation montmorillonite Trans. Farad. Soc. 61 28162819.CrossRefGoogle Scholar
Greene-Kelly, R., (1955) Sorption of aromatic organic compounds by montmorillonite—I. Orientation studies Trans. Farad. Soc. 51 412424.CrossRefGoogle Scholar
Greene-Kelly, R., (1955) Sorption of aromatic organic compounds by montmorillonite—II. Packing studies with pyridine Trans. Farad. Soc. 51 425430.CrossRefGoogle Scholar
Leader, G. R. and Gormley, J. F., (1951) The dielectric constant of N-methylamides J. Am. Chem. Soc. 73 57315733.CrossRefGoogle Scholar
MacEwan, D. M. C., (1948) Complexes of clays with organic compounds—I. Complex formation between montmorillonite and halloysite and certain organic liquids Trans. Farad. Soc. 44 349367.CrossRefGoogle Scholar
Meighan, R. M. and Cole, R. H., (1964) Dielectric properties of alkyl amides—I. Vapour phase dipole moments and polarization in benzene solution J. Phys. Chem. 68 503508.CrossRefGoogle Scholar
Millen, W. A., (1967) Ion association and solvation in dipolar aprotic solvents .Google Scholar
Millen, W. A. and Watts, D. W., (1967) Theoretical calculations of thermodynamic functions of solvation of ions J. Am. Chem. Soc. 89 60516056.CrossRefGoogle Scholar
Norrish, K., (1954) The swelling of montmorillonite Disc. Farad. Soc. 18 120134.CrossRefGoogle Scholar
Norrish, K. and Quirk, J. P., (1954) Crystalline swelling of montmorillonite—use of electrolytes to control swelling Nature 173 255256.CrossRefGoogle Scholar
Norrish, K. and Rausell Colom, J. A., (1963) Low angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite Clays and Clay Minerais 10 123149.Google Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P., (1971) Adsorption of pyridine N-oxide onto montmorillonite Clays and Clay Minerais 21 191198.CrossRefGoogle Scholar
Posner, A. M. and Quirk, J. P., (1964) The adsorption of water from concentrated electrolyte solutions by montmorillonite and illite Proc. R. Soc. Lond. 278A 3556.Google Scholar
Posner, A. M. and Quirk, J. P., (1964) Changes in basal spacing of montmorillonite in electrolyte solutions J. Colloid Sci. 19 798812.CrossRefGoogle Scholar
Quirk, J. P., (1968) Particle interaction and soil swelling Israel J. Chem. 6 213234.CrossRefGoogle Scholar
Schlafer, H. L. and Schaffernicht, W., (1960) Dimethyl sulphoxide as a solvent for inorganic compounds Angew. Chem. 72 618626.Google Scholar
Tahoun, S. A., (1965) Complexes of montmorillonite with primary, secondary, and tertiary amides .Google Scholar
Warkentin, B. P. and Schofield, R. K., (1962) Swelling pressures of Na-montmorillonite in NaCl solutions J. Soil Sci. 13 98105.CrossRefGoogle Scholar
Yariv, S., Russell, J. D. and Farmer, V. C., (1966) Infra-red study of the adsorption of benzoic acid and nitrobenzene in montmorillonite Israel J. Chem. 4 201213.CrossRefGoogle Scholar