Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T18:50:28.820Z Has data issue: false hasContentIssue false

Surface Properties of Allophane, Halloysite, and Imogolite

Published online by Cambridge University Press:  02 April 2024

B. K. G. Theng
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand
M. Russell
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand
G. J. Churchman
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand
R. L. Parfitt
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption of sodium, chloride, and phosphate ions by allophane, imogolite, and halloysite has been studied in relation to the surface structure of the mineral samples. The high adsorption of phosphate (>200 μmole/g) and chloride (10–30 meq/100 g at pH 4) by allophane is ascribed to the small particle size of allophane, its high surface area (∼800 m2/g), and the presence at the surface of Al-OH-Al groups and defect sites. In contrast, halloysite has a relatively large particle size and a Si-O-Si surface. Accordingly, the adsorption of phosphate (5–10 μmole/g) and chloride (1 meq/100 g) by halloysite is very much lower as compared with allophane. Phosphate adsorption by halloysite is also related to particle morphology and the number of edge sites. Thus, a sample consisting entirely of spheroidal particles adsorbed only 5 μmole/g at a solution concentration of 1 × 10−4 M, whereas the tubular types of comparable surface area adsorbed 7–10 μmole/g at the same concentration. This is because spheroidal halloysite particles have few, if any, edge sites at which phosphate can adsorb. The relative degree of order and hydration of halloysite, as indicated by infrared spectroscopy, also affects phosphate adsorption. However, this factor is apparently less important than particle morphology and surface structure. Although imogolite also has an Al-OH-Al surface, it contains relatively few defect sites where phosphate can adsorb. Consequently, much less phosphate (120 μmole/g) was adsorbed as compared with allophane.

Резюме

Резюме

Исследовалась адсорбция ионов натрия, хлорида и фосфата на аллофане, имоголите и галлоизите по отношению к структурам поверхности образцов эних минералов. Высокая адсорбция фосфата (>200 μмоль/г) и хлорида (10–30 мэкв/100 г при pH = 4) на аллофане приписых вается малым размерам частиц аллофана, его большой площади поверхности (~800 м2/г), а также присутствию групп Аl-ОН-Аl и дефектов на поверхности. В противоположность, галлоизит характеризуется относительно большим размером частиц и Si-О-Si типом поверхности. Следовательно, адсорбция фосфата (5–10 μмоль/г) и хлорида (1 мэкв/100 г) на галлоизите является низкой по сравнению с аллофаном. Адсорбция фосфата на галлоизите связана также с морфологией частиц и количеством краевых мест. Поэтому образец, состоящий исключительно из сфероидальных частиц, адсорбировал только 5 /тмоль/г при концентрации раствора 1 × 10−4 М, тогда как образцы с частицами в виде таблиц со сравнимыми площадями поверхности адсорбировали 7–10 μмоль/г при этой концентрации. Это было результатом отсутствия, практически, краевых мест, на которых фосфат может адсорбироваться в сфероидальном галлоизите. Относительная степень упорядочения и гидратации галлоизита, определенная по инфракрасной спектроскопии, тоже влияет на адсорбцию фосфата. Однако, этот фактор является менее значительным, чем морфология частиц и структура поверхности. Хотя имоголит также имеет Аl-ОН-Аl поверхность, он содержит относительно мало дефектов, на которых может быть адсорбирован фосфат. Поэтому меньшее количество фосфата (120 μмоль/г) адсорбировалось имоголитом по сравнению с аллофаном. [Е.С.]

Resümee

Resümee

Es wurde die Adsorption von Natrium-, Chlorid-, und Phosphat-Ionen durch Allophan, Imogolit, und Halloysit in Abhängigkeit von der Oberflächenstruktur der Mineralproben untersucht. Die Adsorption von Phosphat (>200 μMol/g) und Chlorid (10–30 mÄqu/100 g bei pH 4) durch Allophan ist durch die kleine Teilchengröße des Allophans und durch seine große Oberfläche (~800 m2/g), und durch die Anwesenheit von Al-OH-Al-Gruppen und Störstellen auf der Oberfläche bedingt. Halloysit hat im Gegensatz dazu eine relative große Teilchengröße und eine Si-O-Si-Oberfläche. Dementsprechend ist die Adsorption von Phosphat (5–10 μMol/g) und Chlorid (1 mÄqu/100 g) durch Halloysit viel geringer im Vergleich zu der des Allophan. Die Phosphatadsorption durch Halloysit hängt ebenfalls mit der Teilchenmorphologie und der Zahl der Kantenplätze zusammen. Aus diesem Grund adsorbierte eine Probe, die nur aus kugeligen Teilchen bestand, nur 5 /rMol/g bei einer Lösungskonzentration von 1 × 10−4 Mol, während röhrenförmige Arten von vergleichbarer Oberfläche 7–10 μMol/g bei der gleichen Konzentration adsorbierten. Dies ist dadurch bedingt, daß die kugeligen Halloysitteilchen nur wenige, wenn überhaupt, Kantenplätze haben, an denen das Phosphat adsorbiert werden kann. Der relative Ordnungsgrad und Hydratationsgrad von Halloysit, der durch Infrarotspektroskopie zu erkennen ist, beeinflußt ebenfalls die Phosphatadsorption. Dieser Faktor ist jedoch offensichtlich weniger wichtig als die Teilchenmorphologie und die Oberflächenstruktur. Obwohl Imogolit ebenfalls eine Al-OH-Al-Oberfläche hat, enthält er relative wenig Störstellen, an die Phosphat adsorbiert werden kann. Demzufolge wurde viel weniger Phosphat (120 μMol/g) als an Allophan adsorbiert. [U.W.]

Résumé

Résumé

On a étudié l'adsorption d'ions de sodium, de chlore, et de phosphore par l'allophane, l'imogoüte, et l'halloysite, en relation avec la structure de surface des échantillons minéraux. L'adsorption haute du phosphore (>200 μmole/g) et du chlore (10–30 meq/100 g à pH 4) par l'allophane est assignée à la petite taille de la particule maille de l'allophane, à sa grande aire de surface (~800 m2/g) et à la surface de groupes Al-OH-Al et de sites de défection. Par contraste, l'halloysite a une taille de particule relativement grande, et une surface Si-O-Si. Par conséquent, l'adsorption du phosphore (5–10 μmole/g et du chlore (1 meq/100 g) par l'halloysite est beaucoup plus basse en comparaison avec l'allophane. L'adsorption de phosphore par l'halloysite est aussi apparentée à la morphologie de la particule et au nombre de sites sur les bords. Ainsi, un échantillon consistant entièrement de particules sphéroidales n'a adsorbé que 5 p,mole/g à une concentration de solution d’ 1 × 10−4 M, tandis que les types tubulaires d'aire de surface comparable ont adsorbé 7–10 pmole/g à la même concentration. Ceci se produit parce que les particules sphéroidales d'halloysite n'ont que peu de sites sur les bords sur lesquels le phosphore peut être adsorbé, si en fait il y a de tels sites. Le degré d'ordre et d'hydration de l'halloysite, indiqué par la spectroscopie infrarouge, affecte aussi l'adsorption de phosphore. Ce facteur est cependant apparemment moins important que la morphologie de la particule et que l'aire de surface. Malgré que l'imogolite a aussi une surface Al-OH-Al, elle contient relativement peu de sites de défection où le phosphore peut être adsorbé. Conséquemment, beaucoup moins de phosphore (120 μmole/g) a été adsorbé en comparaison avec l'allophane. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Bates, T. F., 1959 Morphology and crystal chemistry of 1:1 layer lattice silicates Amer. Mineral. 44 78114.Google Scholar
Bolland, M. D. A., Posner, A. M. and Quirk, J. P., 1976 Surface charge on kaolinites in aqueous suspension Aust. J. Soit Res. 14 197216.Google Scholar
Brindley, G. W. and Brown, G., 1961 Kaolin, serpentine and kindred minerais The X-ray Identification and Crystal Structures of Clay Minerais London Mineralogical Society 51131.Google Scholar
Farmer, V. C., Fraser, A. R. and Tait, J. M., 1979 Characterization of the Chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy Geochim. Cosmochim. Acta 43 14171420.CrossRefGoogle Scholar
Fieldes, M. and Schofield, R. K., 1960 Mechanisms of ion adsorption by inorganic soil colloids N.Z. J. Sci. 3 563579.Google Scholar
Greenland, D. J., Mott, C. J. B., Greenland, D. J. and Hayes, M. H. B., 1978 Surfaces of soil particles The Chemistry of Soil Constituents Chichester Wiley 321354.Google Scholar
Henmi, T. and Wada, K., 1976 Morphology and composition of allophane Amer. Minerai. 61 379390.Google Scholar
Higashi, T. and Ikeda, H., 1974 Dissolution of allophane by acid oxalate solution Clay Sci. 4 205212.Google Scholar
Hughes, I. R., 1966 Minerai changes of halloysite on drying N.Z. J. Sci. 9 103113.Google Scholar
Kirkman, J. H., 1977 Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras Clay Miner. 8 199216.CrossRefGoogle Scholar
Marsters, S., 1978 Report upon the extraction and industrial uses of halloysite Proc. Ann. Conf. Aust. Inst. Mining Metallurgy, Whangarei 91100.Google Scholar
Murphy, J. and Riley, J. P., 1962 A modified single solution method for the détermination of phosphate in natural waters Anal. Chim-Acta 27 3136.CrossRefGoogle Scholar
Parfitt, R. L., 1978 Anion adsorption by soils and soil materials Advan. Agron. 30 150.Google Scholar
Parfitt, R. L. and Theng, B. K. G., 1980 Chemical properties of variable charge soils Soils with Variable Charge 167194.Google Scholar
Parfitt, R. L. and Henmi, T., 1980 The structure of some allophanes from New Zealand Clays & Clay Minerais 28 285294.CrossRefGoogle Scholar
Parfitt, R. L., Fraser, A. R., Russell, J. D. and Farmer, V. C., 1977 Adsorption on hydrous oxides. II. Oxalate, benzoate, and phosphate on gibbsite J. Soil Sci. 28 4047.CrossRefGoogle Scholar
Parfitt, R. L., Furkert, R. J. and Henmi, T., 1980 Identification and structure of two types of allophane from volcanic ash soils and tephra Clays & Clay Minerais 28 328334.CrossRefGoogle Scholar
Parker, T. W., 1969 A classification of kaolinites by infrared spectroscopy Clay Miner. 8 135141.CrossRefGoogle Scholar
Perrott, K. W., 1977 Surface charge characteristics of amorphous aluminosilicates Clays & Clay Minerais 25 417421.CrossRefGoogle Scholar
Pullar, W. A., Birrell, K. S. and Heine, J. C., 1973 Named tephras and tephra formations occurring in the central North Island with notes on derived soils and buried paleosols N. Z. J. Geol. Geophys. 16 497518.CrossRefGoogle Scholar
Radoslovich, E. W., 1963 The cell dimensions and symmetry of layer-lattice silicates. VI. Serpentine and kaolin morphology Amer. Minerai. 48 368378.Google Scholar
Rouxhet, P. G., Samudacheata, N., Jacobs, H. and Anton, O., 1977 Attribution of the OH stretching bands of kaolinite Clay Miner. 12 171180.CrossRefGoogle Scholar
Russell, M., Parfitt, R. L. and Claridge, G. G. C., 1980 Estimation of the amounts of allophane and other minerais in the clay fraction of an Egmont loam profile (Andept) from New Zealand Aust. J. Soil Res. .CrossRefGoogle Scholar
Schofield, R. K., 1949 Effect of pH on electric charges carried by clay particles J. Soil Sci. 1 18.CrossRefGoogle Scholar
Wada, K., Dixon, J. B. and Weed, S. B., 1977 Allophane and imogolite Minerais in Soil Environments 603638.Google Scholar
Wells, N., Childs, C. W. and Downes, C. J., 1977 Silica Springs, Tongariro National Park, New Zealand—analyses of the spring water and characterisation of the alumino-silicate deposit Geochim. Cosmochim. Acta 41 14971506.CrossRefGoogle Scholar
Wells, N., Theng, B. K. G. and Walker, G. D., 1980 Behaviour of imogolite gels under shear Clay Sci. 5 257265.Google Scholar