Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T07:27:17.507Z Has data issue: false hasContentIssue false

Surface Microtopography of Lath-Shaped Hydrothermal Illite by Tapping-Mode™ and Contact-Mode AFM

Published online by Cambridge University Press:  28 February 2024

Yoshihiro Kuwahara
Affiliation:
Department of Evolution of Earth Environments, Graduate School of Social and Cultural Studies, Kyushu University, Ropponmatsu, Fukuoka 810, Japan
Seiichiro Uehara
Affiliation:
Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Hakozaki, Fukuoka 812, Japan
Yoshikazu Aoki
Affiliation:
Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Hakozaki, Fukuoka 812, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lath-shaped hydrothermal illite particles in Izumiyama pottery stone were examined by contact-mode atomic force microscopy (CMAFM) and tapping-mode AFM (TMAFM) in air. With CMAFM, the lath-shaped particles showed interlacing patterns on the (001) surface in deflection images, while in height images such patterns were unclear. Also, evidence of artifacts caused by frictional forces between the surface and tip and/or edge effects were found in the CMAFM height images of the particle and Si substrate surfaces. In contrast, TMAFM showed interlacing patterns clearly in both amplitude and height images, and artifacts were barely evident. The TMAFM height images permitted the accurate measurement of 1.0- or 2.0-nm height steps corresponding to single or double mica layers, as well.

Many lath-shaped particles in the Izumiyama hydrothermal illite exhibit interlacing patterns on their (001) surface, as shown by these AFM observations. The interlacing patterns are characterized by polygonal spirals with comparatively wide spacings and steps having a height of 1.0 or 2.0 nm. Generally a single lath-shaped particle has a single spiral center on the (001) surface, and 2 mica layers rotated 120° originate from the dislocation point. These support the view that lath-shaped illites belong to the 2M1 polytype. It is likely that these illite particles were formed by a uniform process of development that is characterized by very slow growth, spiral mechanisms in that growth and low supersaturation conditions.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Baronnet, A. and Buseck, P.R., 1992 Polytypism and stacking disorder Minerals and reactions at the atomic scale: Transmission electron microscopy Washington, DC Mineral Soc Am. 231288 10.1515/9781501509735-011.CrossRefGoogle Scholar
Bickmore, B.R. and Hochella, M.F. Jr., 1997 The particle specific nature of mica weathering: Real-time observation of K+ exchange in clay-sized mica particles using fluid cell TMAFM™ 7th Ann VM Goldschmidt Conf Houston Lunar and Planetary Institute 2728.Google Scholar
Binnig, G. Quate, C.F. and Gerber, C.h., 1986 Atomic force microscope Phys Rev Lett 56 930933 10.1103/PhysRevLett.56.930.CrossRefGoogle ScholarPubMed
Blum, A.E., 1994 Determination of illite/smectite particle morphology using scanning force microscopy Scanning probe microscopy of clay minerals 7 172202.Google Scholar
Butt, H.-J. Wolff, E.K. Gould, S.A.C. Dixon Northern, B. Peterson, C.M. and Hansma, P.K., 1990 Imaging cells with the atomic force microscope J Struct Biol 105 5461 10.1016/1047-8477(90)90098-W.CrossRefGoogle ScholarPubMed
Digital Instruments., 1993 Nanoscope III Comand reference manual Vers. 3.0 .Google Scholar
Dove, P.M. and Hochella, M.F. Jr., 1993 Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by scanning force microscopy Geochim Cosmochim Acta 57 705714 10.1016/0016-7037(93)90381-6.CrossRefGoogle Scholar
Dove, P.M. and Chermak, J.A., 1994 Mineral-water interactions: Fluid cell applications of scanning force microscopy Scanning probe microscopy of clay minerals 7 140169.Google Scholar
Drake, B. Prater, C.B. Weisenhorn, A.L. Gould, S.A.C. Albrecht, T.R. Quate, C.F. Cannell, D.S. Hansma, H.G. and Hansma, P.K., 1989 Imaging crystals, polymers, and processes in water with the atomic force microscope Science 243 15861589 10.1126/science.2928794.CrossRefGoogle ScholarPubMed
Durbin, S.D. and Carlson, W.E., 1992 Lysozyme crystal growth studied by atomic force microscopy J Crystal Growth 122 7179 10.1016/0022-0248(92)90228-B.CrossRefGoogle Scholar
Eggleston, C.M., 1994 High-resolution scanning probe microscopy: Tip-surface interaction, artifacts, and applications in mineralogy and geochemistry Scanning probe microscopy of clay minerals 7 390.Google Scholar
Grantham, M.C. and Dove, P.M., 1996 Investigation of bacterial-mineral interactions using fluid tapping mode™ atomic force microscopy Geochim Cosmochim Acta 57 24732480 10.1016/0016-7037(96)00155-X.CrossRefGoogle Scholar
Gratz, A.J. Manne, S. and Hansma, P.K., 1991 Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz Science 251 13431346 10.1126/science.251.4999.1343.CrossRefGoogle ScholarPubMed
Gratz, A.J. Hillner, P.E. and Hansma, P.K., 1992 Step dynamics and spiral growth on calcite Geochim Cosmochim Acta 57 491495 10.1016/0016-7037(93)90449-7.CrossRefGoogle Scholar
Gref, R. Minamitake, Y. Peracchia, M.T. Trubetskoy, V. Torchilin, V. and Langer, R., 1994 Biodegradable long-circulating polymeric nanospheres Science 263 16001603 10.1126/science.8128245.CrossRefGoogle ScholarPubMed
Hansma, H.G. Vesenka, J. Siegerist, C. Kelderman, G. Morrett, H. Sinsheimer, R.L. Elings, V. Bustamante, C. and Hansma, P.K., 1992 Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope Science 256 11801184 10.1126/science.256.5060.1180.CrossRefGoogle ScholarPubMed
Hansma, H.G. Laney, D.E. Bezanilla, M. Sinsheimer, R.L. and Hansma, P.K., 1995 Applications for atomic force microscopy of DNA Biophys J 68 16721677 10.1016/S0006-3495(95)80343-7.CrossRefGoogle ScholarPubMed
Hartmann, H. Sposito, G. Yang, A. Manne, S. Gould, S.A.C. and Hansma, P.K., 1990 Molecular-scale imaging of clay mineral surfaces with the atomic force microscope Clays Clay Miner 38 337342 10.1346/CCMN.1990.0380401.CrossRefGoogle Scholar
Hillner, P.E. Gratz, A.J. Manne, S. and Hansma, P.K., 1992 Atomic-scale imaging of calcite growth and dissolution in real time Geology 20 359362 10.1130/0091-7613(1992)020<0359:ASIOCG>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Hirasawa, K. and Uehara, S., 1998 Microtexture and microstructure of illite from the Izumiyama pottery stone, Arita, Saga Prefecture A study of mineral boundary and surface by HRTEM and AFM 1433.Google Scholar
Huber, C.A. Huber, T.E. Sadoqi, M. Lubin, J.A. Manalis, S. and Prater, C.B., 1994 Nanowire array composites Science 263 800802 10.1126/science.263.5148.800.CrossRefGoogle ScholarPubMed
Inoue, A. Kohyama, N. Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays Clay Miner 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Inoue, A. Velde, B. Meunier, A. and Touchard, G., 1988 Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system Am Mineral 73 13251334.Google Scholar
Johnsson, P.A. Eggleston, C.M. and Hochella, M.F. Jr., 1991 Imaging molecular-scale structure and microtopography of hematite with the atomic force microscope Am Mineral 76 14421445.Google Scholar
Kitagawa, R. Takeno, S. and Sunagawa, I., 1983 Surface microtopographies of sericite crystals formed in different environmental conditions Mineral J 11 282296 10.2465/minerj.11.282.CrossRefGoogle Scholar
Kumai, K. Tsuchiya, K. Nakato, T. Sugahara, Y. and Kuroda, K., 1995 AFM observation of kaolinite surface using “pressed” powder Clay Sci 9 311316.Google Scholar
Lindgreen, H. Garnæs, J. Hansen, P.L. Besenbacher, F. Lægsgaard, E. Stensgaard, I. Gould, S.A.C. and Hansma, P.K., 1991 Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM Am Mineral 76 12181222.Google Scholar
Maurice, P.A. Hochella, M.F. Jr Parks, G.A. Sposito, G. and Schwertmann, U., 1994 Evolution of hematite surface microtopography upon dissolution by simple organic acids Clays Clay Miner 43 3950.Google Scholar
Mazzola, L.T. and Fodor, S.P.A., 1995 Imaging biomolecule arrays by atomic force microscopy Biophys J 68 16531660 10.1016/S0006-3495(95)80394-2.CrossRefGoogle ScholarPubMed
Nagy, K.L., 1994 Application of morphological data obtained using scanning force microscopy to quantification of fibrous illite growth rates Scanning probe microscopy of clay minerals 7 204239.Google Scholar
Ohnesorge, F. and Binnig, G., 1993 True atomic resolution by atomic force microscopy through repulsive and attractive forces Science 260 14511456 10.1126/science.260.5113.1451.CrossRefGoogle ScholarPubMed
Putman, C.A.J. van der Werf, K.O. de Grooth, B.G. van Hulst, N.F. and Greve, J., 1994 Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy Biophys J 67 17491753 10.1016/S0006-3495(94)80649-6.CrossRefGoogle ScholarPubMed
Rachlin, A.L. Henderson, G.S. and Goh, M.C., 1992 An atomic force microscope (AFM) study of the calcite cleavage plane: Image averaging in Fourier space Am Mineral 77 904910.Google Scholar
Radmacher, M. Fritz, M. Hansma, H.G. and Hansma, P.K., 1994 Direct observation of enzyme activity with the atomic force microscope Science 265 15771579 10.1126/science.8079171.CrossRefGoogle ScholarPubMed
Stipp, S.L.S. Eggleston, C.M. and Nielsen, B.S., 1994 Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM) Cosmoehim Acta 58 30233033 10.1016/0016-7037(94)90176-7.CrossRefGoogle Scholar
Sunagawa, I. and Koshino, Y., 1975 Growth spirals on kaolin group minerals Am Mineral 60 407412.Google Scholar
Tomura, S. Kitamura, M. and Sunagawa, I., 1976 Surface microtopography of metamorphic white micas Phys Chem Miner 5 6581 10.1007/BF00308169.CrossRefGoogle Scholar
Umemura, K. Arakawa, H. and Ikai, A., 1993 High resolution images of cell surface using a tapping mode atomic force microscope Japan J Appl Phys 32 L1711 L1714 10.1143/JJAP.32.L1711.CrossRefGoogle Scholar
Vrdoljak, G.A. Henderson, G.S. and Fawcett, J.J., 1994 Structural relaxation of the chlorite surface imaged by the atomic force microscope Am Mineral 79 107112.Google Scholar
Weidler, P.G. Schwinn, T. and Gaub, H.E., 1996 Vicinal faces on synthetic goethite observed by atomic force microscopy Clays Clay Miner 44 437442 10.1346/CCMN.1996.0440401.CrossRefGoogle Scholar
Weisenhorn, A.L. Mac Dougall, J.E. Gould, S.A.C. Cox, S.D. Wise, W.S. Massie, J. Maivald, P. Elings, B. Stucky, G.D. and Hansma, P.K., 1990 Imaging and manipulating molecules on a zeolite surface with an atomic force microscope Science 247 13301333 10.1126/science.247.4948.1330.CrossRefGoogle ScholarPubMed
Wicks, F.J. Kjoller, K. and Henderson, G.S., 1992 Imaging the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope Can Mineral 30 8391.Google Scholar
Wicks, F.J. Kjoller, K. Eby, R.K. Hawthorne, F.C. Henderson, G.S. and Vrdoljak, G.A., 1993 Imaging the internal atomic structure of layer silicates using the atomic force microscope Can Mineral 31 541550.Google Scholar
Wicks, F.J. Henderson, G.S. and Vrdoljak, G.A., 1994 Atomic and molecular scale imaging of layered and other mineral structures Scanning probe microscopy of clay minerals 7 92138.Google Scholar
Zhong, Q. Inniss, D. Kjoller, K. and Elings, V.B., 1993 Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy Surface Sci Lett 290 L688 L692.Google Scholar