Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T13:57:22.142Z Has data issue: false hasContentIssue false

The Surface Coulomb Energy and Proton Coulomb Potentials of Pyrophyllite {010}, {110}, {100}, and {130} EDGES

Published online by Cambridge University Press:  28 February 2024

William F. Bleam
Affiliation:
Department of Soil Science, 1525 Observatory Drive, University of Wisconsin-Madison, Madison, Wisconsin 53706-1299
Gereon J. Welhouse
Affiliation:
Department of Soil Science, 1525 Observatory Drive, University of Wisconsin-Madison, Madison, Wisconsin 53706-1299
Mark A. Janowiak
Affiliation:
Department of Soil Science, 1525 Observatory Drive, University of Wisconsin-Madison, Madison, Wisconsin 53706-1299
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper describes structural models of four pyrophyllite edge faces: {010}, {110}, {100}, and {130}. Water molecules chemisorbed to Lewis acid sites stabilize edge faces both crystallochemically and electrostatically. The detailed assignment of protons to surface oxygens and the orientation of OH bond-vectors both influence the surface Coulomb energy.

The geometry chosen for the electrostatic calculations was infinite pyrophyllite ribbon the thickness of a single phyllosilicate layer and the width of 50 to 70 unit cells. Such a phyllosilicate ribbon has only two edges, a top and bottom, which were simulated using the edge-face models mentioned above. About 94% of the surface Coulomb energy is confined to the edge-face repeat unit. The surface Coulomb energies of the four edge faces are on the order of 2–3 nJ/m, varying ± 1 nJ/m with proton assignment. The Coulomb potential, measured either within the layer or parallel to the layer, has a distinct negative trend near the edge face that can be traced to chemisorbed water molecules. Finally, the correlation between proton Coulomb potentials at the edge face and the coordination environment of the protons is poor, obscured by long-range interactions.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Andre, J. M., Fripiat, J G D C Bredas, J. L. and Delhalle, J., 1978 Long-range Coulombic interactions in the theory of polymers: A statement of the problem and a method for calculation by the Fourier transformation method Int. J. Quantum Chem. Quantum Chem. Symp. 12 233247.Google Scholar
Bleam, W. F., 1990 The electrostatic potential at the basal {001} surface of talc and pyrophyllite as related to tetra-hedral-sheet distortions Clays & Clay Minerals 38 522526 10.1346/CCMN.1990.0380509.CrossRefGoogle Scholar
Brown, I. D. and Shannon, R. D., 1973 Empirical bond-strength-bond-length curves for oxides Acta Cryst. A 29 266282 10.1107/S0567739473000689.CrossRefGoogle Scholar
Coker, H., 1983 Elementary methods for the evaluation of electrostatic potentials in ionic crystals J. Phys. Chem. 87 25122525 10.1021/j100237a015.CrossRefGoogle Scholar
Davis, J. A. and Kent, D. B., 1990 Surface complexation modeling in aqueous geochemistry Rev. Mineral 23 177260.Google Scholar
Delhalle, J., Fripiat, J. G. and Piela, L., 1980 On the use of Laplace transform to evaluate one-dimensional lattice summations in quantum calculations of model polymers Int. J. Quantum Chem. Quantum Chem. Symp. 14 431442.Google Scholar
Eyjen, H. M., 1932 On the stability of certain heteropolar crystals Phys. Rev. 39 675687 10.1103/PhysRev.39.675.CrossRefGoogle Scholar
Ewald, P. P., 1921 Die Berechnung optischer und elektrostatischer Gitterpotentiale Ann. Phys. (Leipzig) 64 253287 10.1002/andp.19213690304.CrossRefGoogle Scholar
Ferris, A. P. and Jepson, W. B., 1975 The exchange capacities of kaolinite and the preparation of homoionic clays J. Colloid Interface Sci. 51 245259 10.1016/0021-9797(75)90110-1.CrossRefGoogle Scholar
Fripiat, J. G. and Delhalle, J., 1979 Fourier representation of the Coulombic contributions to polymer chains J. Cornput. Phys. 33 425431 10.1016/0021-9991(79)90168-2.CrossRefGoogle Scholar
Giese, R. F., 1976 Hydroxyl orientations in gibbsite and bayerite Acta Cryst. B 32 17191723 10.1107/S0567740876006298.CrossRefGoogle Scholar
Giese, R. F., 1979 Hydroxyl orientations in 2:1 phyllosilicates Clay & Clay Minerals 27 213223 10.1346/CCMN.1979.0270307.CrossRefGoogle Scholar
Giese, R. F., 1984 Electrostatic energy models of micas Rev. Mineral 13 105144.Google Scholar
Glasser, M. L. and Zucker, I. J., 1980 Lattice sums Theoret. Chem. Adv. Perspect. 5 67139 10.1016/B978-0-12-681905-2.50008-6.CrossRefGoogle Scholar
Grim, R. E. and Guven, N., 1978 Bentonites: Geology, Mineralogy, Properties and Uses Amsterdam Elsevier.Google Scholar
Harris, F. E., 1972 Fourier representation methods for electronic structures of linear polymers J. Chem. Phys. 56 44224425 10.1063/1.1677884.CrossRefGoogle Scholar
Harris, F. E., 1975 Hartree-Fock studies of electronic structures of crystalline solids Theoret. Chem. Adv. Perspect. 1 147218 10.1016/B978-0-12-681901-4.50011-8.CrossRefGoogle Scholar
Hartman, P., 1982 On the growth of dolomite and kaolinite crystals Neu. Jahr. Mineral. Monat. 1982 8492.Google Scholar
Hartman, P. and Perdok, W. G., 1955 On the relations between structure and morphology of crystals. I Acta Cryst. 8 4952 10.1107/S0365110X55000121.CrossRefGoogle Scholar
Hartman, P. and Perdok, W. G., 1955 On the relations between structure and morphology of crystals. II Acta Cryst. 8 521524 10.1107/S0365110X55001679.CrossRefGoogle Scholar
Hartman, P. and Perdok, W. G., 1955 On the relations between structure and morphology of crystals. III Acta Cryst. 8 524529.Google Scholar
Hiemstra, T., van Riemsdijk, W. H. and Bolt, G. H., 1989 Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach J. Colloid Interface Sci. 133 91104 10.1016/0021-9797(89)90284-1.CrossRefGoogle Scholar
Leadbetter, A. J., Ward, R. C., Clark, J. W., Tucker, P. A., Matsuo, T. and Suga, H., 1985 The equilibrium low-temperature structure of ice J. Chem. Phys. 82 424428 10.1063/1.448763.CrossRefGoogle Scholar
Lee, J. H. and Guggenheim, S., 1981 Single crystal x-ray refinement of pyrophyllite-1Tc Am. Mineral. 66 350357.Google Scholar
Muljadi, D., Posner, A. M. and Quirk, J. P., 1966 The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite J. Soil Sci. 17 230237 10.1111/j.1365-2389.1966.tb01468.x.CrossRefGoogle Scholar
O’Keeffe, M., 1989 The prediction and interpretation of bond lengths in crystals Struct. bonding (Berlin) 71 161190 10.1007/3-540-50775-2_5.CrossRefGoogle Scholar
O’Keeffe, M. and Stuart, J. A., 1983 Bond energies in solid oxides Inorg. Chem. 22 177179 10.1021/ic00143a040.CrossRefGoogle Scholar
Parks, G. A., 1990 Surface energy and adsorption at mineral-water interfaces: An introduction Rev. Mineral 23 133175.Google Scholar
Parry, D. E., 1975 The electrostatic potentialin the surface region of an ionic crystal Surface Sci. 49 433440 10.1016/0039-6028(75)90362-3.CrossRefGoogle Scholar
Pauling, L., 1929 The principles determining the structure of complex ionic crystals J. Amer. Chem. Soc. 51 10101026 10.1021/ja01379a006.CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., 1989 Numerical Recipes in Pascal. The Art of Scientific Computing New York Cambridge.Google Scholar
Quirk, J. P., 1960 Negative and positive adsorption of chloride by kaolinite Nature 188 253254 10.1038/188253a0.CrossRefGoogle Scholar
Russell, J. D., Paterson, E., Fraser, A. R. and Farmer, V. C., 1975 Adsorption of carbon dioxide on goethite (α-FeOOH) surfaces, and its implications for anion adsorption J. Chem. Soc., Faraday Trans. 1 71 16231630 10.1039/f19757101623.CrossRefGoogle Scholar
Schindler, P. W., Stumm, W. and Stumm, W., 1987 The surface chemistry oxides, hydroxides and oxide minerals Aquatic Surface Chemistry New York Wiley 83110.Google Scholar
Schofield, R. K. and Samson, H. R., 1953 The deflocculation of kaolinite suspensions and the accompanying change-over from positive to negative chloride adsorption Clay Mineral Bull. 2 4551 10.1180/claymin.1953.002.9.08.CrossRefGoogle Scholar
Schofield, R. K. and Samson, H. R., 1954 Flocculation of kaolinite due to the attraction of oppositely charged crystal faces Disc. Faraday Soc 135145.CrossRefGoogle Scholar
Secor, R. B. and Radke, C. J., 1985 Spillover of the diffuse double layer on montmorillonite particles J. Colloid Interface Set. 103 237244 10.1016/0021-9797(85)90096-7.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sun, B. N. and Baronnet, A., 1989 Hydrothermal growth of OH-phlogopite single crystals. I. Undoped growth medium J. Crystal Growth 96 265276 10.1016/0022-0248(89)90524-1.CrossRefGoogle Scholar
Sun, B. N. and Baronnet, A., 1989 Hydrothermal growth of OH-phlogopite single crystals. II. Role of Cr and Ti adsorption on crystal growth rater Chem. Geol. 78 301314 10.1016/0009-2541(89)90065-X.CrossRefGoogle Scholar
Swartzen-Allen, S. L. and Matijevic, E., 1974 Surface and colloid chemistry of clays Chem. Rev. 74 385400 10.1021/cr60289a004.CrossRefGoogle Scholar
Torrie, G. M. and Valleau, J. P., 1980 Electrical double layers. I. Monte Carlo study of a uniformly charged surface J. Chem. Phys. 73 58075816 10.1063/1.440065.CrossRefGoogle Scholar
Van Olphen, H., 1977 An Introduction to Clay Colloid Chemistry New York Wiley.Google Scholar
Van Santen, R. A., 1982 Chemical-bonding aspects of heterogeneous catalysis. II. Solid acids J. Roy. Neth. Chem. Soc. 101 157163.Google Scholar
White, G. N. and Zelazny, L., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays & Clay Minerals 36 141146 10.1346/CCMN.1988.0360207.CrossRefGoogle Scholar
Ziolkowski, J., 1986 Crystallochemical model of active sites on oxide catalysis J. Catal. 100 4558 10.1016/0021-9517(86)90070-9.CrossRefGoogle Scholar
Ziolkowski, J. and Dziembaj, L., 1985 Empirical relationship between individual cation-oxygen bond-length and bond energy in crystals and in molecules J. Solid State Chem. 57 291299 10.1016/0022-4596(85)90153-7.CrossRefGoogle Scholar