Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:01:19.881Z Has data issue: false hasContentIssue false

The Structures of Ornithine-Vermiculite and 6-Aminohexanoic Acid-Vermiculite

Published online by Cambridge University Press:  01 July 2024

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fourier syntheses have been used to establish the arrangement of organic molecules in the interlamellar regions of a 16.10 Å phase of ornithine-vermiculite and a 16.92 Å phase of 6-aminohexanoic acid-vermiculite. The organic cations form two layers parallel to the silicate surfaces in ornithine-vermiculite and in 6-aminohexanoic acid-vermiculite the organic cations form ascending and descending “stairs” from the silicate sheets.

Ornithine-vermiculite forms a true single layer polytype but by contrast 6-aminohexanoic acid-vermiculite is two-layered and has a true c axis of 34.09 Å. Since a two layered vermiculite was used as a starting material to prepare the organic complexes, exchangeable organic cations affect the stacking sequence of the silicate sheets.

Type
Research Article
Copyright
Copyright © 1976 The Clay Minerals Society

References

Boder, G., Bednowitz, A. L. and Post, B. (1967) The crystal structure of ε-aminocaproic acid: Acta Cryst. 23, 482490.CrossRefGoogle Scholar
Brown, B. E. and Bailey, S. W. (1962) Chlorite polytypism—I. Regular and semi-random one layer structures: Am. Miner. 47, 819850.Google Scholar
Busing, W. R. and Levy, H. A. (1957) High-speed computation of the absorption correction for single crystal diffraction measurements: Acta. Cryst. 10, 180182.CrossRefGoogle Scholar
Busing, W. R., Martin, K. O. and Levy, H. A. (1962) ORFLS, A Fortran crystallographic least-squares program: Oak Ridge National Laboratory, Tennessee.CrossRefGoogle Scholar
Calle, C. de la, Suquet, H. and Pezerat, H. (1975) Glissement de feuillets accompagnant certains échanges cationiques dans les monocristaux de vermiculites: Bull. Gr. Fr. Arg. t. XXVII, 3149.Google Scholar
Chiba, A., Ueki, T., Ashida, T., Sasada, Y. and Kakuda, M. (1967) The crystal structure of L-ornithine hydrochloride: Acta. Cryst. 22, 863870.CrossRefGoogle Scholar
Iglesias, J. E. and Steinfink, H. (1974) A structural investigation of a vermiculite–piperidine complex: Clays & Clay Minerals 22, 9195.CrossRefGoogle Scholar
Kanamaru, E. and Vand, V. (1970). The crystal structure of a clay-organic complex of 6-aminohexanoic acid and vermiculite: Am. Miner. 55, 15501561.Google Scholar
Mathieson, A. McL. and Walker, G. F. (1954) Crystal structure of magnesium–vermiculite: Am. Miner. 39, 231255.Google Scholar
Mifsud, A., Fornés, V. and Rausell-Colom, J. A. (1970) Cationic complexes of vermiculite with L-ornithine: Reunion hispano-belga de minerales de la arcilla. Proc. Madrid pp. 121127Google Scholar
Raupach, M. and Janik, L. (1976) The orientation of ornithine and 6-aminohexanoic acid adsorbed on vermiculite from polarized i.r. ATR spectra. Clays & Clay Minerals 24, 127133.CrossRefGoogle Scholar
Raupach, M., Slade, P. G., Janik, L. and Radoslovich, E. W. (1975) A polarized i.r. and X-ray study of lysine–vermiculite: Clays & Clay Minerals 23, 181186.CrossRefGoogle Scholar
Rausell-Colom, J. A. and Fornés, V. (1974) Monodimensional Fourier analysis of some vermiculite-l-ornithine + complexes: Am. Miner. 59, 790798.Google Scholar