Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T08:27:12.618Z Has data issue: false hasContentIssue false

Structural Investigations of Natural and Synthetic Chlorite Minerals by X-ray Diffraction, Mössbauer Spectroscopy and Solid-State Nuclear Magnetic Resonance

Published online by Cambridge University Press:  01 January 2024

Åsa Zazzi
Affiliation:
Department of Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Tomas K. Hirsch*
Affiliation:
Physical Chemistry Division, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Ekaterina Leonova
Affiliation:
Physical Chemistry Division, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Andrei Kaikkonen
Affiliation:
Physical Chemistry Division, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Jekabs Grins
Affiliation:
Inorganic Chemistry Division, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Hans Annersten
Affiliation:
Department of Earth Sciences, Uppsala University, SE-752 36 Uppsala, Sweden
Mattias Edén*
Affiliation:
Physical Chemistry Division, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
*
Present address: Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, MS 69, Menlo Park, California, 94025-7015, USA
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structures of one synthetic and two natural chlorites of the chlinochlore type were explored using X-ray diffraction, magic-angle spinning nuclear magnetic resonance (NMR) and Mössbauer spectroscopy. Rietveld refinements indicated that all structures are of the trioctahedral ordered IIb polytype. Mössbauer spectra provided the ratio IIFe/IIIFe but gave no evidence for the presence of IIIFe in the brucite-like sheet. We also report unit-cell parameters, Mössbauer isomeric shifts, Si NMR chemical shifts as well as 27Al isotropic shifts and quadrupolar coupling parameters. Very broad 29Si NMR peaks from the natural samples prevented us from obtaining accurate information on the Si-Al ordering in the tetrahedral sheets; the limitations of 29Si NMR as applied to natural chlorites are discussed. High-resolution 3QMAS NMR resolved the 27Al signal of the M4 octahedral site in the brucite-like sheet from the other three Al signals of crystallographically inequivalent octahedral positions.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Annersten, H., (1974) Mössbauer studies of biotites American Mineralogist 59 143151.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1123.Google Scholar
Bailey, S.W. and Bailey, S.W., (1988) Chlorites: structures and crystal chemistry Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C Mineralogical Society of America 347403 10.1515/9781501508998-015.CrossRefGoogle Scholar
Bailey, S.W. Brindley, G.W. Johns, W.D. Martin, R.T. and Ross, M., (1971) Summary of national and international recommendations on clay mineral nomenclature by 1969–1970. Clay Minerals Society Nomenclature Committee Clays and Clay Minerals 64 129132 10.1346/CCMN.1971.0190210.CrossRefGoogle Scholar
Barron, P.F. Slade, P. and Frost, R.L., (1985) Ordering of aluminum in tetrahedral sites in mixed-layer 2:1 phyllosilicates by solid-state high-resolution NMR Journal of Physical Chemistry 89 38803885 10.1021/j100264a023.CrossRefGoogle Scholar
Brandt, F. Bosbach, D. Krawczyk-Bärsch, E. Arnold, T. and Bernhard, G., (2003) Chlorite dissolution in the acid pH-range: a combined microscopic and macroscopic approach Geochimica et Cosmochimica Acta 67 14511461 10.1016/S0016-7037(02)01293-0.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G. (1984) Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Monograph 5. Mineralogical Society, London.Google Scholar
Brown, S.P. and Wimperis, S., (1997) Two-dimensional multiple-quantum MAS NMR of quadrupolar nuclei: A comparison of methods Journal of Magnetic Resonance 128 4261 10.1006/jmre.1997.1217.CrossRefGoogle Scholar
Dempsey, E., (1969) The calculation of Madelung potentials for Faujasite-type zeolites. I Journal of Physical Chemistry 73 36603668 10.1021/j100845a018.CrossRefGoogle Scholar
Ericsson, T. and Wäppling, R., (1976) Texture effects in 3/2–1/2 Mössbauer spectra Journal de Physic, Colloque C6 supplement 12 719723.Google Scholar
Ferrow, E. and Roots, M., (1989) A preparation technique for TEM specimens: application to synthetic Mg-chlorite European Journal of Mineralogy 1 815819 10.1127/ejm/1/6/0815.CrossRefGoogle Scholar
Foster, M.D., (1962) Interpretation of the composition and a classification of chlorites US Geological Survey, Professional Paper 414-A 133.Google Scholar
Frydman, L. and Harwood, J.S., (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional Magic-Angle Spinning NMR Journal of the American Chemical Society 117 53675368 10.1021/ja00124a023.CrossRefGoogle Scholar
Grimmer, A. Lampe, F. Mägi, M. and Lippmaa, E., (1983) Hochauflösende 9Si-NMR and festen Silicaten; Einfluß von Fe2+ in olivinen Zeitschrift für Chemie 23 343344 10.1002/zfch.19830230917.CrossRefGoogle Scholar
Herrero, C.P. and Serratosa, J.M., (1989) Dispersion of charge deficits in the tetrahedral sheet of phyllosilicates. Analysis from 29NMR spectra Journal of Physical Chemistry 93 43114315 10.1021/j100347a079.CrossRefGoogle Scholar
Johansson, K.E. Palm, T. and Werner, P.-E., (1980) An automatiac microdensitometer for X-ray powder diffraction photographs Journal of Physics E: Scientific Instruments 13 12891291 10.1088/0022-3735/13/12/015.CrossRefGoogle Scholar
Joswig, W. Fuess, H. Rothbauer, R. Takéuchi, Y. and Mason, S.A., (1980) A neutron diffraction study of a one-layer triclinic chlorite (pennite) American Mineralogist 65 349352.Google Scholar
Klein, C., (2002) The 22nd edition of the Manual of Mineral Science New Jersey John Wiley & Sons, Inc. 641 pp.Google Scholar
Komarneni, S. Fyfe, C.A. Kennedy, G.J. and Strobl, H., (1986) Characterization of synthetic and naturally occurring clays by 27Al and 29Si magic-angle-spinning NMR spectroscopy Journal of the American Ceramic Society 69 C-45C-47.CrossRefGoogle Scholar
Lausen, S.K. Lindgreen, H. Jakobsen, H.J. and Nielsen, N.C., (1999) Solid-state 29Si MAS NMR studies of illite and illitesmectite from shale American Mineralogist 84 14331438 10.2138/am-1999-0922.CrossRefGoogle Scholar
Levitt, M.H., (1997) The signs of frequencies and phases in NMR Journal of Magnetic Resonance 126 164182 10.1006/jmre.1997.1161.CrossRefGoogle Scholar
Lippmaa, E. Samoson, A. and Mägi, M., (1986) Highresolution 27A1 NMR of aluminosilicates Journal of the American Chemical Society 108 17301735 10.1021/ja00268a002.CrossRefGoogle Scholar
Loewenstein, W., (1959) The distribution of aluminum in the tetrahedra of silicates and aluminates American Mineralogist 39 9296.Google Scholar
Lougear, A. Grodzicki, M. Bertoldi, C. Trautwein, A.X. Steiner, K. and Amthauer, G., (2000) Mössbauer and molecular orbital study of chlorites Physics and Chemistry of Minerals 27 258269 10.1007/s002690050255.CrossRefGoogle Scholar
Madhu, P.K. Goldbourt, A. Frydman, L. and Vega, S., (1999) Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses Chemical Physics Letters 307 4147 10.1016/S0009-2614(99)00446-7.CrossRefGoogle Scholar
Man, P.P., (1998) Scaling and labeling the high-resolution isotropic axis of two-dimensional multiple-quantum magic-angle-spinning spectra of half-integer quadropole spins Physical Review B 58 27642782 10.1103/PhysRevB.58.2764.CrossRefGoogle Scholar
Massiot, D. Touzo, B. Trumeau, D. Coutures, J.P. Virlet, J. Florian, P. and Grandinetti, P.J., (1996) Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei Solid State Nuclear Magnetic Resonance 6 7383 10.1016/0926-2040(95)01210-9.CrossRefGoogle ScholarPubMed
Moore, D.M. Reynolds, R.C. Jr., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378 pp.Google Scholar
Morris, H.D. Bank, S. and Ellis, P.D., (1990) 27Al NMR spectroscopy of iron-bearing montmorillonite clays Journal of Physical Chemistry 94 31213129 10.1021/j100370a069.CrossRefGoogle Scholar
Mägi, M. Lippmaa, E. Samoson, A. Engelhardt, G. and Grimmer, A.-R., (1984) Solid-state high-resolution silicon-29 chemical shifts in silicates Journal of Physical Chemistry 88 15181522 10.1021/j150652a015.CrossRefGoogle Scholar
Nagy, K.L. and Ribbe, P.H., (1995) Dissolution and precipitation kinetics of sheet silicates Chemical Weathering Rates of Silicate Minerals Washington, D.C Mineralogical Society of America 173233 10.1515/9781501509650-007.CrossRefGoogle Scholar
Nakata, S. Asaoka, S. Tadami, K. and Takahashi, H., (1986) Characterization of natural zeolites and clays by high-resolution solid-state NMR Nendo-Kagaku 26 197208.Google Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) The chemical constitution of clay Chemistry of Clays and Clay Minerals Essex, UK Longman Scientific and Technical 1128.Google Scholar
Ohkubo, T. Kanehashi, K. Saito, K. and Ikeda, Y., (2003) Observation of two 4-coordinated Al sites in montmorillonite using high magnetic field strength 27Al MQMAS NMR Clays and Clay Minerals 51 513518 10.1346/CCMN.2003.0510505.CrossRefGoogle Scholar
Oldfield, E. Kinsey, R.A. Smith, K.A. Nichols, J.A. and Kirkpatrick, J.R., (1983) High-resolution NMR of inorganic solids. Influence of magnetic centers on magic-angle sample spinning lineshapes in some natural aluminosilicates Journal of Magnetic Resonance 51 325329.Google Scholar
Phillips, T.L. Loveless, J.K. and Bailey, S.W., (1980) Cr3+ coordination in chlorites: a structural study of ten chromian chlorites American Mineralogist 65 112122.Google Scholar
Rodriguez-Carjaval, J. (2000) []. Published online by Leon Brilloin.Google Scholar
Sanz, J. and Serratosa, J.M., (1984) 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates Journal of the American Chemical Society 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Smith, M.E., (1993) Application of 27Al NMR techniques to structure determination in solids Applied Magnetic Resonance 34 159201.Google Scholar
Watanabe, T. Shimizu, H. Masuda, A. and Saito, H., (1983) Studies of 29Si spin-lattice relaxation times and paramagnetic impurities in clay minerals by magic-angle spinning 29Si-NMR and EPR Chemistry Letters 8 12931296 10.1246/cl.1983.1293.CrossRefGoogle Scholar
Weiss, C.A. Jr. Altaner, S.P.J. and Kirkpatrick, R.J., (1987) High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions and chemical variations American Mineralogist 72 935942.Google Scholar
Welch, M.D. Barras, J. and Klinowski, J., (1995) A multi-nuclear NMR study of clinochlore American Mineralogist 80 441447 10.2138/am-1995-5-603.CrossRefGoogle Scholar