Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T05:18:09.618Z Has data issue: false hasContentIssue false

Structural Characterisation of Kaolinite:NaCl Intercalate and its Derivatives

Published online by Cambridge University Press:  28 February 2024

John G. Thompson*
Affiliation:
Research School of Chemistry, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia
Philippa J. R. Uwins
Affiliation:
Centre for Microscopy and Microanalysis, University of Queensland, QLD 4072, Australia
Andrew K. Whittaker
Affiliation:
Centre for Magnetic Resonance, University of Queensland, QLD 4072, Australia
Ian D. R. Mackinnon
Affiliation:
Centre for Microscopy and Microanalysis, University of Queensland, QLD 4072, Australia
*
4Author to whom correspondence should be addressed.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kaolinite:NaCl intercalates with basal layer dimensions of 0.95 and 1.25 nm have been prepared by direct reaction of saturated aqueous NaCl solution with well-crystallized source clay KGa-1. The intercalates and their thermal decomposition products have been studied by XRD, solid-state 23Na, 27Al, and 29Si MAS NMR, and FTIR. Intercalate yield is enhanced by dry grinding of kaolinite with NaCl prior to intercalation. The layered structure survives dehydroxylation of the kaolinite at 500°–600°C and persists to above 800°C with a resultant tetrahedral aluminosilicate framework. Excess NaCl can be readily removed by rinsing with water, producing an XRD “amorphous” material. Upon heating at 900°C this material converts to a well-crystallized framework aluminosilicate closely related to low-carnegieite, NaAlSiO4, some 350°C below its stability field. Reaction mechanisms are discussed and structural models proposed for each of these novel materials.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Barron, P. F., Frost, R. L., Skjemstad, J. O. and Koppi, A., 1983 Detection of two silicon environments in kaolins via solid state 29Si NMR Nature 302 4950 10.1038/302049a0.CrossRefGoogle Scholar
Barth, T F W and Posnjak, E., 1932 Silicate structures of the cristobalite type: I. The crystal structure of α-cristobalite (NaAlSiO4) Z. Kristallogr 81 135141.CrossRefGoogle Scholar
Bennett, J. M., Blackwell, C. S. and Cox, D. E., 1983 High-resolution silicon-29 nuclear magnetic resonance and neutron powder diffraction study of Na-A zeolite. Loewen-stein’s rule vindicated J. Phys. Chem 87 37833790 10.1021/j100242a041.CrossRefGoogle Scholar
Calvert, C. S., 1984 Simplified, complete CsCl-hydrazine-dimethylsulfoxide intercalation of kaolinite Clays & Clay Minerals 32 125130 10.1346/CCMN.1984.0320206.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1966 An Introduction to the Rock-forming Minerals London Longman.Google Scholar
Fyfe, C. A., Gobbi, G. C., Murphy, W. J., Ozubko, R. S. and Slack, D. A., 1984 Investigation of the contributions to the 29Si MAS NMR line widths of zeolites and the detection of crystallographically inequivalent sites by the study of highly siliceous zeolites J. Am. Chem. Soc 106 44354438 10.1021/ja00328a024.CrossRefGoogle Scholar
Gábor, M., Pöppl, L., Izvekov, V. and Beyer, H., 1989 Interaction of kaolinite with organic and inorganic alkali metal salts at 25-1300°C Thermochim. Acta 148 431438 10.1016/0040-6031(89)85244-X.CrossRefGoogle Scholar
Higgins, J. B., and Woessner, D. E., (1982) 29Si, 27Al and 23Na NMR spectra of framework silicates: EOS, Trans. Am. Geophys. Union 63, p. 1139.Google Scholar
Jackson, M. L. and Abdel-Kader, F. H., 1978 Kaolinite intercalation procedure for all sizes and types with X-ray spacing distinctive from other phyllosilicates Clays & Clay Minerals 17 157167.Google Scholar
Kirkpatrick, R. J., 1988 MAS NMR spectroscopy of minerals and glasses Spectroscopic Methods in Mineralogy and Geology 18 341403 10.1515/9781501508974-011.CrossRefGoogle Scholar
Kirkpatrick, R. J., Kinsey, R. A., Smith, K. A., Henderson, D. M. and Oldfield, E., 1985 High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars Amer. Miner 70 106123.Google Scholar
Klingenberg, R., Felsche, J. and Miehe, G., 1981 Crystal data for the low-temperature form of carnegieite NaAlSiO4 J. Appl. Crystallogr 14 6668 10.1107/S0021889881008728.CrossRefGoogle Scholar
Klinowski, J., 1988 Recent advances in solid-state NMR of zeolites Annu. Rev. Mater. Sci 18 189218 10.1146/annurev.ms.18.080188.001201.CrossRefGoogle Scholar
Kohn, S. C., Dupree, R. and Smith, M. E., 1989 A multinuclear magnetic resonance study of the structure of hydrous albite glasses Geochim. Cosmochim. Acta 53 29252935 10.1016/0016-7037(89)90169-5.CrossRefGoogle Scholar
Krämer, F., Müller-Warmuth, W., Scheerer, J. and Dutz, H., 1973 Sodium-23 and lithium-7 NMR studies of silicate and borate glasses: Z. Naturforsch. Tiel A 28 13381350.CrossRefGoogle Scholar
Lambert, J. F., Millman, W. S. and Fripiat, J. J., 1989 Revisiting kaolinite dehydroxylation: A 29Si and 27A1 MAS NMR study J. Am. Chem. Soc 111 35173522 10.1021/ja00192a005.CrossRefGoogle Scholar
Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G. and Grimmer, A.-R., 1980 Structural studies of silicates by solid-state high-resolution 29Si NMR J. Am. Chem. Soc 102 48894893 10.1021/ja00535a008.CrossRefGoogle Scholar
Lippmaa, E., Mägi, M., Samoson, A., Tarmak, M. and Engelhardt, G., 1981 Investigation of the structure of zeolites by solid-state high-resolution 29Si NMR spectroscopy J. Am. Chem. Soc 103 49924996 10.1021/ja00407a002.CrossRefGoogle Scholar
Meinhold, R. H., MacKenzie, K J D and Brown, I. W. M., 1985 Thermal reactions of kaolinite studied by solid state 27Al and 29Si NMR J. Mater. Sci. Lett 4 163166 10.1007/BF00728065.CrossRefGoogle Scholar
Miller, J. G. and Oulton, T. D., 1972 Prototropy in kaolinite during percussive grinding Clays & Clay Minerals 18 313323 10.1346/CCMN.1970.0180603.CrossRefGoogle Scholar
Newsam, J. M., 1985 The influence of second-neighbour aluminums on the isotropic chemical shift of 29Si in a zeolite environment J. Phys. Chem 89 20022005 10.1021/j100256a040.CrossRefGoogle Scholar
Oestrike, R., Yang, W. H., Kirkpatrick, R. J., Hervig, R. L., Navrotsky, A. and Montez, B., 1987 High-resolution 23Na, 27Al, and 29Si NMR spectroscopy of framework aluminosilicate glasses Geochim. Cosmochim. Acta 51 21992209 10.1016/0016-7037(87)90269-9.CrossRefGoogle Scholar
O’Keeffe, M. and Hyde, B. G., 1976 Cristobalites and topologically-related structures Acta Crystallogr. Sect. B 32 29232936 10.1107/S0567740876009308.CrossRefGoogle Scholar
Percival, H. J., Duncan, J. F. and Foster, P. K., 1974 Interpretation of the kaolinite-mullite reaction sequence from infrared absorption spectra J. Am. Ceram. Soc 57 5761 10.1111/j.1151-2916.1974.tb10813.x.CrossRefGoogle Scholar
Range, K. J. and Weiss, A., 1969 Titanium in the kaolinite lattice and formation of pseudoanatase during thermal dissociation of kaolins containing titanium Ber. Dtsch. Keram. Ges 46 629634.Google Scholar
Rocha, J. and Klinowski, J., 1990 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite Phys. Chem. Miner 17 179186 10.1007/BF00199671.CrossRefGoogle Scholar
Sanz, J., Madani, A., Serratosa, J. M., Moya, J. S. and Aza, S., 1988 Aluminium-27 and silicon-29 magic-angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation J. Am. Ceram. Soc 71 C418C421 10.1111/j.1151-2916.1988.tb07513.x.CrossRefGoogle Scholar
Sato, R. K., McMillan, P. F., Dennison, P. and Dupree, R., 1991 High-resolution 27A1 and 29Si NMR investigation of SiO2-Al2O3 glasses J. Phys. Chem 95 44834489 10.1021/j100164a057.CrossRefGoogle Scholar
Smith, J. V. and Tuttle, O. F., 1957 The nepheline-kalsilite system. I X-ray data for crystalline phases Am. J. Sci 255 282305 10.2475/ajs.255.4.282.CrossRefGoogle Scholar
Sugahara, Y., Satokawa, S., Kuroda, K. and Kato, C., 1988 Evidence for the formation of interlayer polyacrylonitrile in kaolinite Clays & Clay Minerals 36 343348 10.1346/CCMN.1988.0360408.CrossRefGoogle Scholar
Sugahara, Y., Satokawa, S., Kuroda, K. and Kato, C., 1990 Preparation of a kaolinite-polyacrylamide intercalation compound Clays & Clay Minerals 38 137143 10.1346/CCMN.1990.0380204.CrossRefGoogle Scholar
Thomas, J. M., Fyfe, C. A., Ramdas, S., Klinowski, J. and Gobbi, G. C., 1982 High-resolution silicon-29 nuclear magnetic resonance spectrum of zeolite ZK-4: Its significance in assessing magic-angle-spinning nuclear magnetic resonance as a structural tool for aluminosilicates J. Phys. Chem 86 30613064 10.1021/j100213a003.CrossRefGoogle Scholar
Thompson, J. G., 1985 Interpretation of solid state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates Clays & Clay Minerals 33 173180 10.1346/CCMN.1985.0330302.CrossRefGoogle Scholar
Thompson, J. G. and Barron, P. F., 1987 Further consideration of 29Si NMR spectrum of kaolinite Clays & Clay Minerals 35 3842 10.1346/CCMN.1987.0350105.CrossRefGoogle Scholar
Thompson, J. G. and Cuff, C., 1985 Crystal structure of kaolinite: dimethylsulfoxide intercalate Clays & Clay Minerals 33 490500 10.1346/CCMN.1985.0330603.CrossRefGoogle Scholar
Weiss, A., Thielepape, W., Orth, H., Heller, L. and Weiss, A., 1966 Neue Ka-olinit-Einlagerungsverbindungen Proc. Int. Clay Conf., Jerusalem, 1966, Vol. 1 Jerusalem Israel Program for Scientific Translations 277293.Google Scholar
Yang, W. H., Kirkpatrick, R. J. and Henderson, D. M., 1986 High-resolution 29Si, 27Al, and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase Amer. Mineral 71 712726.Google Scholar