Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T13:16:00.678Z Has data issue: false hasContentIssue false

Stirring Effects on Properties of Al Goethite Formed From Ferrihydrite

Published online by Cambridge University Press:  28 February 2024

U. Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
H. Stanjek
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Minerals in surface environments form in both turbulent and non-turbulent systems. This study compares the properties of Al goethite formed from ferrihydrite at 60°C in 0.3 M KOH with and without mechanical stirring. Compared to the static system, stirring increased crystal order and needle thickness, decreased unit cell edge length a, but not b and c, reduced the separation between the 2 OH-bending vibrations, increased Al substitution and promoted hematite formation.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Aller, R.C. and Michalopoulos, P., 1996 Control on Fe diagenesis and authigenic mineral formation in terrigenous, nearshore environments Int Symp Geochem Earth’s Surface 1518.Google Scholar
Böhm, J., 1925 Über Aluminium- und Eisenoxide I Z anorg allg Chem 149 203210 10.1002/zaac.19251490114.CrossRefGoogle Scholar
Cambier, P., 1986 Infrared study of goefhite of varying crys-tallinity and particle size. I. Interpretation of OH and lattice vibration frequencies Clay Miner 21 191200 10.1180/claymin.1986.021.2.08.CrossRefGoogle Scholar
Cambier, P., 1986 Infrared study of goethite of varying crys-tallinity and particle size. II. Crystallographic and morphological changes in series of synthetic goethites Clay Miner 21 201210 10.1180/claymin.1986.021.2.09.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The iron oxides Wein-heim VCH Verlag.Google Scholar
Fazey, P.G. O’Connor, B.H. and Hammond, L.C., 1991 X-ray powder diffraction Rietveld characterization of synthetic aluminum-substituted goethite Clays Clay Miner 39 248253 10.1346/CCMN.1991.0390304.CrossRefGoogle Scholar
Glasauer, S.M., 1995 Silicate associated with Fe(hydr)oxides [Ph.D. thesis] München, Germany Techn Univ München.Google Scholar
Kämpf, N. and Schwertmann, U., 1982 Quantitative determination of goethite and hematite in kaolinitic soils by X-ray diffraction Clay Miner 17 359363 10.1180/claymin.1982.017.3.08.CrossRefGoogle Scholar
Lewis, D.G. and Schwertmann, U., 1979 The influence of aluminium on the formation of iron oxides. Part IV. The influence of (Al), (OH), and temperature Clay Miner 14 115126 10.1180/claymin.1979.014.2.04.CrossRefGoogle Scholar
Mann, S. Cornell, R.M. and Schwertmann, U., 1985 The influence of aluminium on iron oxides: XII. High resolution transmission electron microscopic (HRTEM) study of aluminous goethites Clay Miner 20 255262 10.1180/claymin.1985.020.2.09.CrossRefGoogle Scholar
Mullin, J.W., 1993 Crystallization 527.Google Scholar
Mullin, J.W. Murphy, J.D. Söhnel, O. and Spoors, G., 1989 Aging of precipitated magnesium hydroxide Ind Eng Chem Res 28 17251730 10.1021/ie00095a025.CrossRefGoogle Scholar
Ruan, H.D. and Gilkes, R.J., 1995 Acid dissolution of synthetic aluminous goethite before and after transformation to hematite by heating Clay Miner 30 5565 10.1180/claymin.1995.030.1.06.CrossRefGoogle Scholar
Schulze, D.G., 1984 The influence of aluminium on iron oxides VIII. Unit-cell dimension of Al-substituted goethites and estimation of Al from them Clays Clay Miner 32 3644 10.1346/CCMN.1984.0320105.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides. X. Properties of Al-substituted goethites Clay Miner 19 521529 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1987 The influence of aluminium on iron oxides. XIII. Properties of goethites syn-thesised in 0.2 M KOH at 25°C Clay Miner 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eiysenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Löesung Z Pflanzenern Dueng Bodenk 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U. Cambier, P. and Murad, E., 1985 Properties of goethites of varying crystallinity Clays Clay Miner 33 369378 10.1346/CCMN.1985.0330501.CrossRefGoogle Scholar
Schwertmann, U. and Carlson, L., 1994 Aluminum influence on iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites Soil Sci Soc Am J 58 256261 10.2136/sssaj1994.03615995005800010039x.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., 1991 Iron oxides in the laboratory Weinheim VCH Verl.Google Scholar
Schwertmann, U. Fitzpatrick, R.W. Taylor, R.M. and Lewis, D.G., 1979 The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites Clays Clay Miner 27 105112 10.1346/CCMN.1979.0270205.CrossRefGoogle Scholar
Söhnel, O. and Mullin, J.W., 1987 Influence of mixing on batch precipitation Cryst Res Technol 22 12351240 10.1002/crat.2170221004.CrossRefGoogle Scholar
Stanjek, H. and Schwertmann, U., 1992 The influence of aluminum on iron oxides. Part XVI: Hydroxy] and aluminum substitution in synthetic hematites Clays Clay Miner 40 347354 10.1346/CCMN.1992.0400316.CrossRefGoogle Scholar
Thiel, R., 1963 Zum System α-FeOOH-α-AlOOH Z Anorg Allg Chem 326 7078 10.1002/zaac.19633260111.CrossRefGoogle Scholar
Wolska, E. and Schwertmann, U., 1993 The mechanism of solid solution formation between goethite and diaspore N Jb Miner Mh 5 213223.Google Scholar