Article contents
Stirring Effects on Properties of Al Goethite Formed From Ferrihydrite
Published online by Cambridge University Press: 28 February 2024
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Minerals in surface environments form in both turbulent and non-turbulent systems. This study compares the properties of Al goethite formed from ferrihydrite at 60°C in 0.3 M KOH with and without mechanical stirring. Compared to the static system, stirring increased crystal order and needle thickness, decreased unit cell edge length a, but not b and c, reduced the separation between the 2 OH-bending vibrations, increased Al substitution and promoted hematite formation.
- Type
- Research Article
- Information
- Copyright
- Copyright © 1998, The Clay Minerals Society
References
Aller, R.C. and Michalopoulos, P., 1996 Control on Fe diagenesis and authigenic mineral formation in terrigenous, nearshore environments Int Symp Geochem Earth’s Surface 15–18.Google Scholar
Böhm, J., 1925 Über Aluminium- und Eisenoxide I Z anorg allg Chem 149 203–210 10.1002/zaac.19251490114.CrossRefGoogle Scholar
Cambier, P., 1986 Infrared study of goefhite of varying crys-tallinity and particle size. I. Interpretation of OH and lattice vibration frequencies Clay Miner 21 191–200 10.1180/claymin.1986.021.2.08.CrossRefGoogle Scholar
Cambier, P., 1986 Infrared study of goethite of varying crys-tallinity and particle size. II. Crystallographic and morphological changes in series of synthetic goethites Clay Miner 21 201–210 10.1180/claymin.1986.021.2.09.CrossRefGoogle Scholar
Fazey, P.G. O’Connor, B.H. and Hammond, L.C., 1991 X-ray powder diffraction Rietveld characterization of synthetic aluminum-substituted goethite Clays Clay Miner 39 248–253 10.1346/CCMN.1991.0390304.CrossRefGoogle Scholar
Glasauer, S.M., 1995 Silicate associated with Fe(hydr)oxides [Ph.D. thesis] München, Germany Techn Univ München.Google Scholar
Kämpf, N. and Schwertmann, U., 1982 Quantitative determination of goethite and hematite in kaolinitic soils by X-ray diffraction Clay Miner 17 359–363 10.1180/claymin.1982.017.3.08.CrossRefGoogle Scholar
Lewis, D.G. and Schwertmann, U., 1979 The influence of aluminium on the formation of iron oxides. Part IV. The influence of (Al), (OH), and temperature Clay Miner 14 115–126 10.1180/claymin.1979.014.2.04.CrossRefGoogle Scholar
Mann, S. Cornell, R.M. and Schwertmann, U., 1985 The influence of aluminium on iron oxides: XII. High resolution transmission electron microscopic (HRTEM) study of aluminous goethites Clay Miner 20 255–262 10.1180/claymin.1985.020.2.09.CrossRefGoogle Scholar
Mullin, J.W. Murphy, J.D. Söhnel, O. and Spoors, G., 1989 Aging of precipitated magnesium hydroxide Ind Eng Chem Res 28 1725–1730 10.1021/ie00095a025.CrossRefGoogle Scholar
Ruan, H.D. and Gilkes, R.J., 1995 Acid dissolution of synthetic aluminous goethite before and after transformation to hematite by heating Clay Miner 30 55–65 10.1180/claymin.1995.030.1.06.CrossRefGoogle Scholar
Schulze, D.G., 1984 The influence of aluminium on iron oxides VIII. Unit-cell dimension of Al-substituted goethites and estimation of Al from them Clays Clay Miner 32 36–44 10.1346/CCMN.1984.0320105.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides. X. Properties of Al-substituted goethites Clay Miner 19 521–529 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1987 The influence of aluminium on iron oxides. XIII. Properties of goethites syn-thesised in 0.2 M KOH at 25°C Clay Miner 22 83–92 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eiysenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Löesung Z Pflanzenern Dueng Bodenk 105 194–202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U. Cambier, P. and Murad, E., 1985 Properties of goethites of varying crystallinity Clays Clay Miner 33 369–378 10.1346/CCMN.1985.0330501.CrossRefGoogle Scholar
Schwertmann, U. and Carlson, L., 1994 Aluminum influence on iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites Soil Sci Soc Am J 58 256–261 10.2136/sssaj1994.03615995005800010039x.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., 1991 Iron oxides in the laboratory Weinheim VCH Verl.Google Scholar
Schwertmann, U. Fitzpatrick, R.W. Taylor, R.M. and Lewis, D.G., 1979 The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites Clays Clay Miner 27 105–112 10.1346/CCMN.1979.0270205.CrossRefGoogle Scholar
Söhnel, O. and Mullin, J.W., 1987 Influence of mixing on batch precipitation Cryst Res Technol 22 1235–1240 10.1002/crat.2170221004.CrossRefGoogle Scholar
Stanjek, H. and Schwertmann, U., 1992 The influence of aluminum on iron oxides. Part XVI: Hydroxy] and aluminum substitution in synthetic hematites Clays Clay Miner 40 347–354 10.1346/CCMN.1992.0400316.CrossRefGoogle Scholar
Thiel, R., 1963 Zum System α-FeOOH-α-AlOOH Z Anorg Allg Chem 326 70–78 10.1002/zaac.19633260111.CrossRefGoogle Scholar
Wolska, E. and Schwertmann, U., 1993 The mechanism of solid solution formation between goethite and diaspore N Jb Miner Mh 5 213–223.Google Scholar
You have
Access
- 8
- Cited by